基于BiGRU模型的集成方法的情感分析——以AMIS推文为例

Zabit Hameed, S. Shapoval, B. Garcia-Zapirain, Amaia Méndez Zorilla
{"title":"基于BiGRU模型的集成方法的情感分析——以AMIS推文为例","authors":"Zabit Hameed, S. Shapoval, B. Garcia-Zapirain, Amaia Méndez Zorilla","doi":"10.1109/ISSPIT51521.2020.9408866","DOIUrl":null,"url":null,"abstract":"This paper presents a comparably simpler yet effective deep learning approach for sentiment analysis of Twitter topics. We automatically collected positive and negative tweets and labeled them manually, and thus created a new dataset. We then leveraged BiGRU model with an ensemble approach for the binary classification of tweets. Our finalized BiGRU model offered an accuracy of 84.8% as well as an averaged F1-measure of 84.8%(±0.3). Moreover, the ensemble approach, using an averaged prediction of 5-fold strategy, provided the accuracy of 86.3% along with the averaged F1-measure of 86.3%(±0.05). Consequently, the ensemble approach offered better performance even on a smaller dataset used in this study.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sentiment analysis using an ensemble approach of BiGRU model: A case study of AMIS tweets\",\"authors\":\"Zabit Hameed, S. Shapoval, B. Garcia-Zapirain, Amaia Méndez Zorilla\",\"doi\":\"10.1109/ISSPIT51521.2020.9408866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparably simpler yet effective deep learning approach for sentiment analysis of Twitter topics. We automatically collected positive and negative tweets and labeled them manually, and thus created a new dataset. We then leveraged BiGRU model with an ensemble approach for the binary classification of tweets. Our finalized BiGRU model offered an accuracy of 84.8% as well as an averaged F1-measure of 84.8%(±0.3). Moreover, the ensemble approach, using an averaged prediction of 5-fold strategy, provided the accuracy of 86.3% along with the averaged F1-measure of 86.3%(±0.05). Consequently, the ensemble approach offered better performance even on a smaller dataset used in this study.\",\"PeriodicalId\":111385,\"journal\":{\"name\":\"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT51521.2020.9408866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种相对简单但有效的深度学习方法,用于Twitter主题的情感分析。我们自动收集正面和负面的推文,并手动标记,从而创建一个新的数据集。然后,我们利用BiGRU模型和集成方法对tweet进行二元分类。我们最终确定的BiGRU模型的精度为84.8%,平均f1测量值为84.8%(±0.3)。此外,使用5倍平均预测策略的集合方法提供了86.3%的准确率和86.3%(±0.05)的平均f1测量值。因此,即使在本研究中使用的较小的数据集上,集成方法也提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis using an ensemble approach of BiGRU model: A case study of AMIS tweets
This paper presents a comparably simpler yet effective deep learning approach for sentiment analysis of Twitter topics. We automatically collected positive and negative tweets and labeled them manually, and thus created a new dataset. We then leveraged BiGRU model with an ensemble approach for the binary classification of tweets. Our finalized BiGRU model offered an accuracy of 84.8% as well as an averaged F1-measure of 84.8%(±0.3). Moreover, the ensemble approach, using an averaged prediction of 5-fold strategy, provided the accuracy of 86.3% along with the averaged F1-measure of 86.3%(±0.05). Consequently, the ensemble approach offered better performance even on a smaller dataset used in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信