使用基于模式的扩散策略的Twitter营销活动

E. Kafeza, C. Makris, Pantelis Vikatos
{"title":"使用基于模式的扩散策略的Twitter营销活动","authors":"E. Kafeza, C. Makris, Pantelis Vikatos","doi":"10.1109/BigDataCongress.2016.24","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel methodology to achieve information diffusion within a social graph that activates a realistic number of users. Our approach combines the predicted patterns of diffusion for each node with propagation heuristics in order to achieve an effective cover of the graph. The novelty of our methodology is based on the use of history information to predict users' diffusion patterns and on our proposed PBD heuristics for achieving a realistic information spread. Moreover, we use a methodology for calculating the actual diffusion of a message in a social media graph. To validate our approach we present a set of experimental results. Our methodology is useful to marketers who are interested to use social influence and run effective marketing campaigns.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Marketing Campaigns in Twitter Using a Pattern Based Diffusion Policy\",\"authors\":\"E. Kafeza, C. Makris, Pantelis Vikatos\",\"doi\":\"10.1109/BigDataCongress.2016.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel methodology to achieve information diffusion within a social graph that activates a realistic number of users. Our approach combines the predicted patterns of diffusion for each node with propagation heuristics in order to achieve an effective cover of the graph. The novelty of our methodology is based on the use of history information to predict users' diffusion patterns and on our proposed PBD heuristics for achieving a realistic information spread. Moreover, we use a methodology for calculating the actual diffusion of a message in a social media graph. To validate our approach we present a set of experimental results. Our methodology is useful to marketers who are interested to use social influence and run effective marketing campaigns.\",\"PeriodicalId\":407471,\"journal\":{\"name\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2016.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们介绍了一种新的方法来实现在激活实际数量的用户的社交图中实现信息扩散。我们的方法将每个节点的预测扩散模式与传播启发式相结合,以实现对图的有效覆盖。我们方法的新颖性是基于使用历史信息来预测用户的传播模式,以及我们提出的PBD启发式方法来实现现实的信息传播。此外,我们使用了一种方法来计算社交媒体图中消息的实际扩散。为了验证我们的方法,我们给出了一组实验结果。我们的方法对那些有兴趣利用社会影响力并开展有效营销活动的营销人员很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marketing Campaigns in Twitter Using a Pattern Based Diffusion Policy
In this paper we introduce a novel methodology to achieve information diffusion within a social graph that activates a realistic number of users. Our approach combines the predicted patterns of diffusion for each node with propagation heuristics in order to achieve an effective cover of the graph. The novelty of our methodology is based on the use of history information to predict users' diffusion patterns and on our proposed PBD heuristics for achieving a realistic information spread. Moreover, we use a methodology for calculating the actual diffusion of a message in a social media graph. To validate our approach we present a set of experimental results. Our methodology is useful to marketers who are interested to use social influence and run effective marketing campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信