Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick
{"title":"学习一种用于自动驾驶车辆端到端控制的深度神经网络策略","authors":"Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick","doi":"10.23919/ACC.2017.7963716","DOIUrl":null,"url":null,"abstract":"Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Learning a deep neural net policy for end-to-end control of autonomous vehicles\",\"authors\":\"Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick\",\"doi\":\"10.23919/ACC.2017.7963716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning a deep neural net policy for end-to-end control of autonomous vehicles
Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.