动物识别是基于声学模式的提取过程原理和模拟神经组织的多标签分类

Defrianto Defrianto, Titrawani Titrawani, L. Umar, Vepy Asyana
{"title":"动物识别是基于声学模式的提取过程原理和模拟神经组织的多标签分类","authors":"Defrianto Defrianto, Titrawani Titrawani, L. Umar, Vepy Asyana","doi":"10.31258/jkfi.19.1.51-56","DOIUrl":null,"url":null,"abstract":"An acoustic identification and classification system of frogs has been designed based on the principle of wavelet extraction and label classification using an artificial neural network (ANN). This system consists of electronic detection for frog audio as well as an interface using the MATLAB 2018b software as an ANN provider device. As input for the neural network, 5 types of frogs were used, namely the rock frog (Limnonectes macrodon), the blentung frog (Kaloula baleata), the hip frog (Limnonectesblythii), the rice field frog (Fejervarya cancrivora), and the trench frog. frog. frog (Fejervarya limnocharis). ), each with 12 sound samples. Before being inserted into the neural network, 3 levels of sound samples were extracted and denoised using wavelet symlet 3. Furthermore, in the neural network training process, 3 validation samples and 3 test samples were used. After training, the artificial neural network was able to identify the type of frog being tested.","PeriodicalId":403286,"journal":{"name":"Komunikasi Fisika Indonesia","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDENTIFIKASI HEWAN BERDASARKAN POLA AKUSTIK DENGAN PRINSIP EKSTRAKSI WAVELET DAN KLASIFIKASI MULTI-LABEL JARINGAN SYARAF TIRUAN\",\"authors\":\"Defrianto Defrianto, Titrawani Titrawani, L. Umar, Vepy Asyana\",\"doi\":\"10.31258/jkfi.19.1.51-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An acoustic identification and classification system of frogs has been designed based on the principle of wavelet extraction and label classification using an artificial neural network (ANN). This system consists of electronic detection for frog audio as well as an interface using the MATLAB 2018b software as an ANN provider device. As input for the neural network, 5 types of frogs were used, namely the rock frog (Limnonectes macrodon), the blentung frog (Kaloula baleata), the hip frog (Limnonectesblythii), the rice field frog (Fejervarya cancrivora), and the trench frog. frog. frog (Fejervarya limnocharis). ), each with 12 sound samples. Before being inserted into the neural network, 3 levels of sound samples were extracted and denoised using wavelet symlet 3. Furthermore, in the neural network training process, 3 validation samples and 3 test samples were used. After training, the artificial neural network was able to identify the type of frog being tested.\",\"PeriodicalId\":403286,\"journal\":{\"name\":\"Komunikasi Fisika Indonesia\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Komunikasi Fisika Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31258/jkfi.19.1.51-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komunikasi Fisika Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31258/jkfi.19.1.51-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于小波提取和人工神经网络标签分类的原理,设计了蛙类声音识别分类系统。该系统由青蛙音频的电子检测和使用MATLAB 2018b软件作为神经网络提供设备的接口组成。神经网络的输入使用了5种蛙类,分别是岩蛙(Limnonectes macrodon)、棱蛙(Kaloula baleata)、臀蛙(Limnonectesblythii)、稻田蛙(Fejervarya cancrivora)和沟蛙。青蛙。蛙(Fejervarya limnocharis)。,每个有12个声音样本。在插入神经网络之前,提取3级声音样本并使用小波符号3去噪。此外,在神经网络训练过程中,使用了3个验证样本和3个测试样本。经过训练,人工神经网络能够识别被测试青蛙的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IDENTIFIKASI HEWAN BERDASARKAN POLA AKUSTIK DENGAN PRINSIP EKSTRAKSI WAVELET DAN KLASIFIKASI MULTI-LABEL JARINGAN SYARAF TIRUAN
An acoustic identification and classification system of frogs has been designed based on the principle of wavelet extraction and label classification using an artificial neural network (ANN). This system consists of electronic detection for frog audio as well as an interface using the MATLAB 2018b software as an ANN provider device. As input for the neural network, 5 types of frogs were used, namely the rock frog (Limnonectes macrodon), the blentung frog (Kaloula baleata), the hip frog (Limnonectesblythii), the rice field frog (Fejervarya cancrivora), and the trench frog. frog. frog (Fejervarya limnocharis). ), each with 12 sound samples. Before being inserted into the neural network, 3 levels of sound samples were extracted and denoised using wavelet symlet 3. Furthermore, in the neural network training process, 3 validation samples and 3 test samples were used. After training, the artificial neural network was able to identify the type of frog being tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信