迈向稳健的生产机器学习系统:管理数据集转移

Hala Abdelkader
{"title":"迈向稳健的生产机器学习系统:管理数据集转移","authors":"Hala Abdelkader","doi":"10.1145/3324884.3415281","DOIUrl":null,"url":null,"abstract":"The advances in machine learning (ML) have stimulated the integration of their capabilities into software systems. However, there is a tangible gap between software engineering and machine learning practices, that is delaying the progress of intelligent services development. Software organisations are devoting effort to adjust the software engineering processes and practices to facilitate the integration of machine learning models. Machine learning researchers as well are focusing on improving the interpretability of machine learning models to support overall system robustness. Our research focuses on bridging this gap through a methodology that evaluates the robustness of machine learning-enabled software engineering systems. In particular, this methodology will automate the evaluation of the robustness properties of software systems against dataset shift problems in ML. It will also feature a notification mechanism that facilitates the debugging of ML components.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Towards Robust Production Machine Learning Systems: Managing Dataset Shift\",\"authors\":\"Hala Abdelkader\",\"doi\":\"10.1145/3324884.3415281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advances in machine learning (ML) have stimulated the integration of their capabilities into software systems. However, there is a tangible gap between software engineering and machine learning practices, that is delaying the progress of intelligent services development. Software organisations are devoting effort to adjust the software engineering processes and practices to facilitate the integration of machine learning models. Machine learning researchers as well are focusing on improving the interpretability of machine learning models to support overall system robustness. Our research focuses on bridging this gap through a methodology that evaluates the robustness of machine learning-enabled software engineering systems. In particular, this methodology will automate the evaluation of the robustness properties of software systems against dataset shift problems in ML. It will also feature a notification mechanism that facilitates the debugging of ML components.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3415281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3415281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

机器学习(ML)的进步刺激了将它们的功能集成到软件系统中。然而,软件工程和机器学习实践之间存在着明显的差距,这阻碍了智能服务发展的进程。软件组织正在努力调整软件工程过程和实践,以促进机器学习模型的集成。机器学习研究人员也专注于提高机器学习模型的可解释性,以支持整个系统的鲁棒性。我们的研究重点是通过评估支持机器学习的软件工程系统的鲁棒性的方法来弥合这一差距。特别是,这种方法将自动评估软件系统对机器学习中数据集移位问题的鲁棒性。它还将具有一个通知机制,有助于机器学习组件的调试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Robust Production Machine Learning Systems: Managing Dataset Shift
The advances in machine learning (ML) have stimulated the integration of their capabilities into software systems. However, there is a tangible gap between software engineering and machine learning practices, that is delaying the progress of intelligent services development. Software organisations are devoting effort to adjust the software engineering processes and practices to facilitate the integration of machine learning models. Machine learning researchers as well are focusing on improving the interpretability of machine learning models to support overall system robustness. Our research focuses on bridging this gap through a methodology that evaluates the robustness of machine learning-enabled software engineering systems. In particular, this methodology will automate the evaluation of the robustness properties of software systems against dataset shift problems in ML. It will also feature a notification mechanism that facilitates the debugging of ML components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信