对银和金光学正交码

M. Buratti
{"title":"对银和金光学正交码","authors":"M. Buratti","doi":"10.26493/2590-9770.1236.CE4","DOIUrl":null,"url":null,"abstract":"It is several years that no theoretical construction for optimal (v, k, 1) optical orthogonal codes (OOCs) with new parameters has been discovered. In particular, the literature almost completely lacks optimal (v, k, 1)-OOCs with k > 3 which are not regular. In this paper we will show how some elementary difference multisets allow to obtain three new classes of optimal but not regular (3p, 4, 1)-, (5p, 5, 1)-, and (2p, 4, 1)-OOCs which are describable in terms of Pell and Fibonacci numbers. The OOCs of the first two classes (resp. third class) will be called silver (resp. golden) since they exist provided that the square of a silver element (resp. golden element) of ℤp is a primitive square of ℤp.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On silver and golden optical orthogonal codes\",\"authors\":\"M. Buratti\",\"doi\":\"10.26493/2590-9770.1236.CE4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is several years that no theoretical construction for optimal (v, k, 1) optical orthogonal codes (OOCs) with new parameters has been discovered. In particular, the literature almost completely lacks optimal (v, k, 1)-OOCs with k > 3 which are not regular. In this paper we will show how some elementary difference multisets allow to obtain three new classes of optimal but not regular (3p, 4, 1)-, (5p, 5, 1)-, and (2p, 4, 1)-OOCs which are describable in terms of Pell and Fibonacci numbers. The OOCs of the first two classes (resp. third class) will be called silver (resp. golden) since they exist provided that the square of a silver element (resp. golden element) of ℤp is a primitive square of ℤp.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1236.CE4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1236.CE4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

具有新参数的最优(v, k, 1)光正交码(OOCs)的理论构造已经有好几年没有发现了。特别是,文献中几乎完全缺乏k > 3的最优(v, k, 1)- ooc,它们是不规则的。在本文中,我们将展示一些初等差分多集如何允许获得三种新的最优但不正则的(3p, 4,1)-, (5p, 5,1)-和(2p, 4,1)- ooc,它们可以用Pell和Fibonacci数来描述。前两个类的ooc(参见。三等)将被称为二等(二等)。黄金),因为它们存在,但前提是银元素的平方(例如:(p的黄金元素)是p的原始平方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On silver and golden optical orthogonal codes
It is several years that no theoretical construction for optimal (v, k, 1) optical orthogonal codes (OOCs) with new parameters has been discovered. In particular, the literature almost completely lacks optimal (v, k, 1)-OOCs with k > 3 which are not regular. In this paper we will show how some elementary difference multisets allow to obtain three new classes of optimal but not regular (3p, 4, 1)-, (5p, 5, 1)-, and (2p, 4, 1)-OOCs which are describable in terms of Pell and Fibonacci numbers. The OOCs of the first two classes (resp. third class) will be called silver (resp. golden) since they exist provided that the square of a silver element (resp. golden element) of ℤp is a primitive square of ℤp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信