符号距离函数的操作

Csaba Bálint, Gábor Valasek, L. Gergó
{"title":"符号距离函数的操作","authors":"Csaba Bálint, Gábor Valasek, L. Gergó","doi":"10.14232/ACTACYB.24.1.2019.3","DOIUrl":null,"url":null,"abstract":"We present a theoretical overview of signed distance functions and analyze how this representation changes when applying an offset transformation. First, we analyze the properties of signed distance and the sets they describe. \nSecond, we introduce our main theorem regarding the distance to an offset set in (X,||.||) strictly normed Banach spaces. An offset set of D in X is the set of points equidistant to D. We show when such a set can be represented by f(x)-c=0, where c denotes the radius of the offset. Finally, we explain these results for applications that offset signed distance functions.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Operations on Signed Distance Functions\",\"authors\":\"Csaba Bálint, Gábor Valasek, L. Gergó\",\"doi\":\"10.14232/ACTACYB.24.1.2019.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a theoretical overview of signed distance functions and analyze how this representation changes when applying an offset transformation. First, we analyze the properties of signed distance and the sets they describe. \\nSecond, we introduce our main theorem regarding the distance to an offset set in (X,||.||) strictly normed Banach spaces. An offset set of D in X is the set of points equidistant to D. We show when such a set can be represented by f(x)-c=0, where c denotes the radius of the offset. Finally, we explain these results for applications that offset signed distance functions.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/ACTACYB.24.1.2019.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.24.1.2019.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了有符号距离函数的理论概述,并分析了在应用偏移变换时这种表示是如何变化的。首先,我们分析了符号距离的性质及其所描述的集合。其次,我们引入了关于(X,|,|,|,|)严格赋范Banach空间中到偏移集的距离的主要定理。D在X中的偏移集是与D等距的点的集合,我们证明了当这样的集合可以用f(X)-c=0来表示,其中c表示偏移的半径。最后,我们对偏移符号距离函数的应用解释了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operations on Signed Distance Functions
We present a theoretical overview of signed distance functions and analyze how this representation changes when applying an offset transformation. First, we analyze the properties of signed distance and the sets they describe. Second, we introduce our main theorem regarding the distance to an offset set in (X,||.||) strictly normed Banach spaces. An offset set of D in X is the set of points equidistant to D. We show when such a set can be represented by f(x)-c=0, where c denotes the radius of the offset. Finally, we explain these results for applications that offset signed distance functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信