进一步改进几何拟合

K. Kanatani
{"title":"进一步改进几何拟合","authors":"K. Kanatani","doi":"10.1109/3DIM.2005.49","DOIUrl":null,"url":null,"abstract":"We give a formal definition of geometric fitting in a way that suits computer vision applications. We point out that the performance of geometric fitting should be evaluated in the limit of small noise rather than in the limit of a large number of data as recommended in the statistical literature. Taking the KCR lower bound as an optimality requirement and focusing on the linearized constraint case, we compare the accuracy of Kanatani's renormalization with maximum likelihood (ML) approaches including the FNS of Chojnacki et al. and the HEIV of Leedan and Meer. Our analysis reveals the existence of a method superior to all these.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Further improving geometric fitting\",\"authors\":\"K. Kanatani\",\"doi\":\"10.1109/3DIM.2005.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a formal definition of geometric fitting in a way that suits computer vision applications. We point out that the performance of geometric fitting should be evaluated in the limit of small noise rather than in the limit of a large number of data as recommended in the statistical literature. Taking the KCR lower bound as an optimality requirement and focusing on the linearized constraint case, we compare the accuracy of Kanatani's renormalization with maximum likelihood (ML) approaches including the FNS of Chojnacki et al. and the HEIV of Leedan and Meer. Our analysis reveals the existence of a method superior to all these.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们给出了适合计算机视觉应用的几何拟合的形式化定义。我们指出,几何拟合的性能应该在小噪声的限制下进行评估,而不是像统计文献中建议的那样在大量数据的限制下进行评估。将KCR下界作为最优性要求,并关注线性化约束情况,我们将Kanatani的重归一化方法的准确性与最大似然(ML)方法(包括Chojnacki等人的FNS和Leedan和Meer的HEIV)方法进行了比较。我们的分析表明存在一种优于所有这些方法的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further improving geometric fitting
We give a formal definition of geometric fitting in a way that suits computer vision applications. We point out that the performance of geometric fitting should be evaluated in the limit of small noise rather than in the limit of a large number of data as recommended in the statistical literature. Taking the KCR lower bound as an optimality requirement and focusing on the linearized constraint case, we compare the accuracy of Kanatani's renormalization with maximum likelihood (ML) approaches including the FNS of Chojnacki et al. and the HEIV of Leedan and Meer. Our analysis reveals the existence of a method superior to all these.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信