Che Wang, Seng Jia, Zhonghong Yan, Yijia Zheng, Shaonan Liu, Haifeng Wang, Dong Liang, Yanjie Zhu
{"title":"基于深度低秩加稀疏网络的快速动态MR图像在线重构","authors":"Che Wang, Seng Jia, Zhonghong Yan, Yijia Zheng, Shaonan Liu, Haifeng Wang, Dong Liang, Yanjie Zhu","doi":"10.1109/CBMS55023.2022.00036","DOIUrl":null,"url":null,"abstract":"In order to test the performance of online reconstruction of deep low-rank pulse sparse network (L+S-Net) for fast dynamic MR imaging. The L+S-Net was implemented on Gadgetron platform for online reconstruction of the scanner. Although L+S-net has a good image reconstruction performance., it takes a long time to estimate the coil sensitivity using ESPIRiT method. In this study, SigPy's signal processing software package was adopted to accelerate the calculation of coil sensitivity to speed up the online reconstruction. The results of experiments showed that compared with the CPU based method., the time of the coil sensitivity estimation could be shortened more than 100 times by using the gridding reconstruction method based on SigPy GPU. The reconstruction performance is stable and can realize online fast dynamic MR imaging reconstruction within 10 seconds.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online reconstruction of fast dynamic MR imaging using deep low-rank plus sparse network\",\"authors\":\"Che Wang, Seng Jia, Zhonghong Yan, Yijia Zheng, Shaonan Liu, Haifeng Wang, Dong Liang, Yanjie Zhu\",\"doi\":\"10.1109/CBMS55023.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to test the performance of online reconstruction of deep low-rank pulse sparse network (L+S-Net) for fast dynamic MR imaging. The L+S-Net was implemented on Gadgetron platform for online reconstruction of the scanner. Although L+S-net has a good image reconstruction performance., it takes a long time to estimate the coil sensitivity using ESPIRiT method. In this study, SigPy's signal processing software package was adopted to accelerate the calculation of coil sensitivity to speed up the online reconstruction. The results of experiments showed that compared with the CPU based method., the time of the coil sensitivity estimation could be shortened more than 100 times by using the gridding reconstruction method based on SigPy GPU. The reconstruction performance is stable and can realize online fast dynamic MR imaging reconstruction within 10 seconds.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"353 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online reconstruction of fast dynamic MR imaging using deep low-rank plus sparse network
In order to test the performance of online reconstruction of deep low-rank pulse sparse network (L+S-Net) for fast dynamic MR imaging. The L+S-Net was implemented on Gadgetron platform for online reconstruction of the scanner. Although L+S-net has a good image reconstruction performance., it takes a long time to estimate the coil sensitivity using ESPIRiT method. In this study, SigPy's signal processing software package was adopted to accelerate the calculation of coil sensitivity to speed up the online reconstruction. The results of experiments showed that compared with the CPU based method., the time of the coil sensitivity estimation could be shortened more than 100 times by using the gridding reconstruction method based on SigPy GPU. The reconstruction performance is stable and can realize online fast dynamic MR imaging reconstruction within 10 seconds.