基于多层模糊逻辑和差分进化算法的二自由度气动人工肌肉系统辨识

Cao Van Kien, Nguyen Ngoc Son, H. Anh
{"title":"基于多层模糊逻辑和差分进化算法的二自由度气动人工肌肉系统辨识","authors":"Cao Van Kien, Nguyen Ngoc Son, H. Anh","doi":"10.1109/ICIEA.2017.8283033","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for identifying a nonlinear pneumatic artificial muscle (PAM) 2-dof parallel system based on the novel NARX multilayer fuzzy model optimized by differential evolution (DE) algorithm. A multilayer fuzzy system is created by combining several MISO multilayer fuzzy models. Each MISO multilayer Fuzzy model is implemented through several Fuzzy Takagi-Sugeno sets. Then fuzzy structures and fuzzy rules of proposed multilayer fuzzy model were optimally trained by DE algorithm. The experiment results are presented. It proves a promisingly scalable and simple method to successfully identify nonlinear MIMO system.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Identification of 2-DOF pneumatic artificial muscle system with multilayer fuzzy logic and differential evolution algorithm\",\"authors\":\"Cao Van Kien, Nguyen Ngoc Son, H. Anh\",\"doi\":\"10.1109/ICIEA.2017.8283033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method for identifying a nonlinear pneumatic artificial muscle (PAM) 2-dof parallel system based on the novel NARX multilayer fuzzy model optimized by differential evolution (DE) algorithm. A multilayer fuzzy system is created by combining several MISO multilayer fuzzy models. Each MISO multilayer Fuzzy model is implemented through several Fuzzy Takagi-Sugeno sets. Then fuzzy structures and fuzzy rules of proposed multilayer fuzzy model were optimally trained by DE algorithm. The experiment results are presented. It proves a promisingly scalable and simple method to successfully identify nonlinear MIMO system.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于基于差分进化算法优化的新型NARX多层模糊模型的非线性气动人工肌肉(PAM)二自由度并联系统辨识新方法。将多个MISO多层模糊模型组合成一个多层模糊系统。每个MISO多层模糊模型通过多个模糊Takagi-Sugeno集实现。然后利用DE算法对多层模糊模型的模糊结构和模糊规则进行最优训练。给出了实验结果。结果表明,该方法具有良好的可扩展性和简单性,可以成功地识别非线性MIMO系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of 2-DOF pneumatic artificial muscle system with multilayer fuzzy logic and differential evolution algorithm
This paper proposes a new method for identifying a nonlinear pneumatic artificial muscle (PAM) 2-dof parallel system based on the novel NARX multilayer fuzzy model optimized by differential evolution (DE) algorithm. A multilayer fuzzy system is created by combining several MISO multilayer fuzzy models. Each MISO multilayer Fuzzy model is implemented through several Fuzzy Takagi-Sugeno sets. Then fuzzy structures and fuzzy rules of proposed multilayer fuzzy model were optimally trained by DE algorithm. The experiment results are presented. It proves a promisingly scalable and simple method to successfully identify nonlinear MIMO system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信