神经网络中模糊输入数据的处理方法

M. E. Cohen, D. Hudson
{"title":"神经网络中模糊输入数据的处理方法","authors":"M. E. Cohen, D. Hudson","doi":"10.1109/FUZZY.1992.258601","DOIUrl":null,"url":null,"abstract":"Neural networks in general lend themselves well to dealing with uncertainty, in that weights are adjusted according to input data. A number of issues arise in neural network research in the handling of uncertain or fuzzy information. These can be divided into several areas: input data; propagation of results through the network: and interpretation of final results. In terms of the fuzzy implementation of neural networks each area is discussed in turn, with possible approaches summarized for each. The introduction of fuzzy input causes substantial problems in most neural network learning algorithms. The learning algorithm must be able to handle interval data. A number of approaches to this problem are outlined. These fall into two main categories: (1) introduction of a preprocessor of some sort in order to handle the fuzzy input; and (2) direct modification of the learning algorithm to handle interval data.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Approaches to the handling of fuzzy input data in neural networks\",\"authors\":\"M. E. Cohen, D. Hudson\",\"doi\":\"10.1109/FUZZY.1992.258601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks in general lend themselves well to dealing with uncertainty, in that weights are adjusted according to input data. A number of issues arise in neural network research in the handling of uncertain or fuzzy information. These can be divided into several areas: input data; propagation of results through the network: and interpretation of final results. In terms of the fuzzy implementation of neural networks each area is discussed in turn, with possible approaches summarized for each. The introduction of fuzzy input causes substantial problems in most neural network learning algorithms. The learning algorithm must be able to handle interval data. A number of approaches to this problem are outlined. These fall into two main categories: (1) introduction of a preprocessor of some sort in order to handle the fuzzy input; and (2) direct modification of the learning algorithm to handle interval data.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

一般来说,神经网络可以很好地处理不确定性,因为权重会根据输入数据进行调整。在神经网络研究中,在处理不确定或模糊信息时出现了许多问题。这些可以分为几个方面:输入数据;通过网络传播结果:以及对最终结果的解释。在神经网络的模糊实现方面,我们依次讨论了每个领域,并为每个领域总结了可能的方法。模糊输入的引入给大多数神经网络学习算法带来了实质性的问题。学习算法必须能够处理区间数据。本文概述了解决这一问题的若干方法。这分为两大类:(1)引入某种预处理器来处理模糊输入;(2)直接修改学习算法来处理区间数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approaches to the handling of fuzzy input data in neural networks
Neural networks in general lend themselves well to dealing with uncertainty, in that weights are adjusted according to input data. A number of issues arise in neural network research in the handling of uncertain or fuzzy information. These can be divided into several areas: input data; propagation of results through the network: and interpretation of final results. In terms of the fuzzy implementation of neural networks each area is discussed in turn, with possible approaches summarized for each. The introduction of fuzzy input causes substantial problems in most neural network learning algorithms. The learning algorithm must be able to handle interval data. A number of approaches to this problem are outlined. These fall into two main categories: (1) introduction of a preprocessor of some sort in order to handle the fuzzy input; and (2) direct modification of the learning algorithm to handle interval data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信