用于算法比较的监督mlp学习的复杂性分析

E. Mizutani, S. Dreyfus
{"title":"用于算法比较的监督mlp学习的复杂性分析","authors":"E. Mizutani, S. Dreyfus","doi":"10.1109/IJCNN.2001.939044","DOIUrl":null,"url":null,"abstract":"This paper presents the complexity analysis of a standard supervised MLP-learning algorithm in conjunction with the well-known backpropagation, an efficient method for evaluation of derivatives, in either batch or incremental learning mode. In particular, we detail the cost per epoch (i.e., operations required for processing one sweep of all the training data) using \"approximate\" FLOPs (floating point operations) in a typical backpropagation for solving neural networks nonlinear least squares problems. Furthermore, we identify erroneous complexity analyses found in the past NN literature. Our operation-count formula would be very useful for a given MLP architecture to compare learning algorithms.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"On complexity analysis of supervised MLP-learning for algorithmic comparisons\",\"authors\":\"E. Mizutani, S. Dreyfus\",\"doi\":\"10.1109/IJCNN.2001.939044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the complexity analysis of a standard supervised MLP-learning algorithm in conjunction with the well-known backpropagation, an efficient method for evaluation of derivatives, in either batch or incremental learning mode. In particular, we detail the cost per epoch (i.e., operations required for processing one sweep of all the training data) using \\\"approximate\\\" FLOPs (floating point operations) in a typical backpropagation for solving neural networks nonlinear least squares problems. Furthermore, we identify erroneous complexity analyses found in the past NN literature. Our operation-count formula would be very useful for a given MLP architecture to compare learning algorithms.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文结合著名的反向传播(一种求导数的有效方法),给出了一种标准监督mlp学习算法在批处理或增量学习模式下的复杂度分析。特别是,我们详细说明了每个历元的成本(即,处理所有训练数据一次扫描所需的操作)使用“近似”FLOPs(浮点操作)在典型的反向传播中解决神经网络非线性最小二乘问题。此外,我们识别了在过去的神经网络文献中发现的错误的复杂性分析。我们的运算计数公式对于给定的MLP架构比较学习算法非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On complexity analysis of supervised MLP-learning for algorithmic comparisons
This paper presents the complexity analysis of a standard supervised MLP-learning algorithm in conjunction with the well-known backpropagation, an efficient method for evaluation of derivatives, in either batch or incremental learning mode. In particular, we detail the cost per epoch (i.e., operations required for processing one sweep of all the training data) using "approximate" FLOPs (floating point operations) in a typical backpropagation for solving neural networks nonlinear least squares problems. Furthermore, we identify erroneous complexity analyses found in the past NN literature. Our operation-count formula would be very useful for a given MLP architecture to compare learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信