{"title":"集成公共交通系统的智慧城市的伏无控制","authors":"Nermin Colo, S. Huseinbegović, I. Džafić","doi":"10.1109/ICAT54566.2022.9811184","DOIUrl":null,"url":null,"abstract":"The Advanced Distribution Management System (ADMS) has grown to be a highly complicated system that comprises distribution generation, batteries, power electronics, and, in case of an urban area, an electric transportation system. One of the most essential features of ADMS is maintaining node voltages and branch thermal ratings within defined limits while maintaining minimal system losses and maximizing the use of renewable energy. Voltage VAr control (VVC) is extensively used to address these challenges and is becoming increasingly significant in ADMS. A side from the necessity to manage the system status, VVC must be adaptable to accommodate future Smart City (SC) requirements such as electric-vehicle charging and energy recuperation management. The majority of existing systems control the DC electric transportation system separately from the entire AC system. This paper attempts to tackle the problem using a hybrid single model that incorporates both: AC and DC network components.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volt-Var Control for Smart Cities with Integrated Public Transportation System\",\"authors\":\"Nermin Colo, S. Huseinbegović, I. Džafić\",\"doi\":\"10.1109/ICAT54566.2022.9811184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Advanced Distribution Management System (ADMS) has grown to be a highly complicated system that comprises distribution generation, batteries, power electronics, and, in case of an urban area, an electric transportation system. One of the most essential features of ADMS is maintaining node voltages and branch thermal ratings within defined limits while maintaining minimal system losses and maximizing the use of renewable energy. Voltage VAr control (VVC) is extensively used to address these challenges and is becoming increasingly significant in ADMS. A side from the necessity to manage the system status, VVC must be adaptable to accommodate future Smart City (SC) requirements such as electric-vehicle charging and energy recuperation management. The majority of existing systems control the DC electric transportation system separately from the entire AC system. This paper attempts to tackle the problem using a hybrid single model that incorporates both: AC and DC network components.\",\"PeriodicalId\":414786,\"journal\":{\"name\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT54566.2022.9811184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Volt-Var Control for Smart Cities with Integrated Public Transportation System
The Advanced Distribution Management System (ADMS) has grown to be a highly complicated system that comprises distribution generation, batteries, power electronics, and, in case of an urban area, an electric transportation system. One of the most essential features of ADMS is maintaining node voltages and branch thermal ratings within defined limits while maintaining minimal system losses and maximizing the use of renewable energy. Voltage VAr control (VVC) is extensively used to address these challenges and is becoming increasingly significant in ADMS. A side from the necessity to manage the system status, VVC must be adaptable to accommodate future Smart City (SC) requirements such as electric-vehicle charging and energy recuperation management. The majority of existing systems control the DC electric transportation system separately from the entire AC system. This paper attempts to tackle the problem using a hybrid single model that incorporates both: AC and DC network components.