基于粒子滤波的最大似然估计金融参数估计

Jinzhe Yang, Binghuan Lin, W. Luk, Terence Nahar
{"title":"基于粒子滤波的最大似然估计金融参数估计","authors":"Jinzhe Yang, Binghuan Lin, W. Luk, Terence Nahar","doi":"10.1109/FPL.2014.6927411","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for estimating parameters of financial models with jump diffusions. It is a Particle Filter based Maximum Likelihood Estimation process, which uses particle streams to enable efficient evaluation of constraints and weights. We also provide a CPU-FPGA collaborative design for parameter estimation of Stochastic Volatility with Correlated and Contemporaneous Jumps model as a case study. The result is evaluated by comparing with a CPU and a cloud computing platform. We show 14 times speed up for the FPGA design compared with the CPU, and similar speedup but better convergence compared with an alternative parallelisation scheme using Techila Middleware on a multi-CPU environment.","PeriodicalId":172795,"journal":{"name":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","volume":"508 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Particle filtering-based Maximum Likelihood Estimation for financial parameter estimation\",\"authors\":\"Jinzhe Yang, Binghuan Lin, W. Luk, Terence Nahar\",\"doi\":\"10.1109/FPL.2014.6927411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for estimating parameters of financial models with jump diffusions. It is a Particle Filter based Maximum Likelihood Estimation process, which uses particle streams to enable efficient evaluation of constraints and weights. We also provide a CPU-FPGA collaborative design for parameter estimation of Stochastic Volatility with Correlated and Contemporaneous Jumps model as a case study. The result is evaluated by comparing with a CPU and a cloud computing platform. We show 14 times speed up for the FPGA design compared with the CPU, and similar speedup but better convergence compared with an alternative parallelisation scheme using Techila Middleware on a multi-CPU environment.\",\"PeriodicalId\":172795,\"journal\":{\"name\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"volume\":\"508 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2014.6927411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2014.6927411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种估计跳跃扩散金融模型参数的新方法。这是一个基于粒子滤波的极大似然估计过程,它使用粒子流来实现约束和权重的有效评估。我们还提供了一个CPU-FPGA协同设计的随机波动参数估计与相关和同步跳跃模型作为案例研究。通过与CPU和云计算平台进行比较,对结果进行评估。我们展示了与CPU相比,FPGA设计的速度提高了14倍,并且与在多CPU环境中使用Techila中间件的替代并行化方案相比,具有类似的加速但更好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle filtering-based Maximum Likelihood Estimation for financial parameter estimation
This paper presents a novel method for estimating parameters of financial models with jump diffusions. It is a Particle Filter based Maximum Likelihood Estimation process, which uses particle streams to enable efficient evaluation of constraints and weights. We also provide a CPU-FPGA collaborative design for parameter estimation of Stochastic Volatility with Correlated and Contemporaneous Jumps model as a case study. The result is evaluated by comparing with a CPU and a cloud computing platform. We show 14 times speed up for the FPGA design compared with the CPU, and similar speedup but better convergence compared with an alternative parallelisation scheme using Techila Middleware on a multi-CPU environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信