{"title":"Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah","authors":"M. K. Anam, Bunga Nanti Pikir, M. Firdaus","doi":"10.30812/matrik.v21i1.1092","DOIUrl":null,"url":null,"abstract":"Pemerintah Pekanbaru saat ini sudah menerapkan teknologi dalam sistem pemerintahan, penerapannya saat ini masih mendapat keluhan dari masyarakat seperti layanan publik command center yang hanya sebagian masyarakat mengetahuinya dan penerapan cctv yang ada di Alat Pemberi Isyarat Lalu Lintas (APILL) yang belum berfungsi dengan baik. Penerapan teknologi lainnya oleh Pemerintah Pekanbaru dapat kita lihat dari keberadaan portal-portal web situs resmi Pemerintah. Sedangkan untuk melihat beragam komentar netizen dari twitter. Twitter menjadi tempat untuk mendapatkan data yang diungkapkan masyarakat melalui tweets yang diposting ke timeline. Analisa sentimen dilakukan untuk melihat pendapat atau kecenderungan opini netizen terhadap pemerintah Pekanbaru yang mengandung sentimen positif, negatif, dan netral. Data yang digunakan adalah tweet dengan jumlah dataset sebanyak 150 tweets. Data tersebut kemudian di analisa agar menjadi informasi. Analisa dilakukan menggunakan metode data mining yaitu Naïve Bayes Classifier, K-Nearest Neighbor (KNN), dan Decision tree. Penggunaan ketiga pendekatan ini berupaya untuk mengkategorikan hasil komentar netizen terkait penggunaan teknologi yang telah melalui proses analisis sentimen dan membandingkan keakuratan ketiga cara tersebut. Hasil akurasi yang didapatkan cukup beragam yaitu dari metode Naïve Bayes akurasi 100%, metode KKN akurasi 98,25%, dan metode decision tree akurasi 62,28%.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i1.1092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
现任政府已经在政府系统中应用了这项技术,其应用目前仍受到一些社区的投诉,比如公共指挥中心(commission center)的公共服务中心(public service center)。我们可以从政府官方网站的门户网站上看到Pekanbaru政府的其他技术应用。同时查看twitter上各种各样的网友评论。Twitter成为人们通过张贴在时间轴上的Twitter来获取公开数据的地方。通过分析,我们可以看到网民对一个具有积极、消极和中立情绪的政府的看法或倾向。我们使用的数据是一条带有150条数据集的微博。分析这些数据以获得信息。该分析采用了数据挖掘方法,即Naive Bayes classier, K-Nearest neighbors和Decision tree。这三种方法的使用试图对通过情感分析过程对技术使用的相关评论结果进行分类,并比较这三种方法的准确性。它的准确性有很多不同之处,包括100%的Naive Bayes方法,98.25%的准确率,以及62.28%的树击率方法。
Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah
Pemerintah Pekanbaru saat ini sudah menerapkan teknologi dalam sistem pemerintahan, penerapannya saat ini masih mendapat keluhan dari masyarakat seperti layanan publik command center yang hanya sebagian masyarakat mengetahuinya dan penerapan cctv yang ada di Alat Pemberi Isyarat Lalu Lintas (APILL) yang belum berfungsi dengan baik. Penerapan teknologi lainnya oleh Pemerintah Pekanbaru dapat kita lihat dari keberadaan portal-portal web situs resmi Pemerintah. Sedangkan untuk melihat beragam komentar netizen dari twitter. Twitter menjadi tempat untuk mendapatkan data yang diungkapkan masyarakat melalui tweets yang diposting ke timeline. Analisa sentimen dilakukan untuk melihat pendapat atau kecenderungan opini netizen terhadap pemerintah Pekanbaru yang mengandung sentimen positif, negatif, dan netral. Data yang digunakan adalah tweet dengan jumlah dataset sebanyak 150 tweets. Data tersebut kemudian di analisa agar menjadi informasi. Analisa dilakukan menggunakan metode data mining yaitu Naïve Bayes Classifier, K-Nearest Neighbor (KNN), dan Decision tree. Penggunaan ketiga pendekatan ini berupaya untuk mengkategorikan hasil komentar netizen terkait penggunaan teknologi yang telah melalui proses analisis sentimen dan membandingkan keakuratan ketiga cara tersebut. Hasil akurasi yang didapatkan cukup beragam yaitu dari metode Naïve Bayes akurasi 100%, metode KKN akurasi 98,25%, dan metode decision tree akurasi 62,28%.