基于机器学习技术的药物评论情感分类

Mohammad Al-Ameen A. Hameed, Khalid Shaker, H. A. Khalaf
{"title":"基于机器学习技术的药物评论情感分类","authors":"Mohammad Al-Ameen A. Hameed, Khalid Shaker, H. A. Khalaf","doi":"10.1109/DeSE58274.2023.10099735","DOIUrl":null,"url":null,"abstract":"Sentiment analysis extracts people's feelings and attitudes about a certain subject. It has recently received a lot of interest in a variety of applications. In general, the sentiment analysis of healthcare, especially of drug experiences of users, might give substantial importance to how to enhance public health and make sound judgments. In this paper, new approaches have been developed that are based on patient reviews to predict sentiment to improve data analysis. Then, use Term Frequency-Inverse Document Frequency (TF-IDF) to extract the features. The experimental findings show that the Random Forest Classifier (RFC) beats all results of other existing models from the literature in terms of Precision, Recall, F1-Score, and Accuracy of 93 % accuracy.","PeriodicalId":346847,"journal":{"name":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sentiment Classification of Drug Reviews Using Machine Learning Techniques\",\"authors\":\"Mohammad Al-Ameen A. Hameed, Khalid Shaker, H. A. Khalaf\",\"doi\":\"10.1109/DeSE58274.2023.10099735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis extracts people's feelings and attitudes about a certain subject. It has recently received a lot of interest in a variety of applications. In general, the sentiment analysis of healthcare, especially of drug experiences of users, might give substantial importance to how to enhance public health and make sound judgments. In this paper, new approaches have been developed that are based on patient reviews to predict sentiment to improve data analysis. Then, use Term Frequency-Inverse Document Frequency (TF-IDF) to extract the features. The experimental findings show that the Random Forest Classifier (RFC) beats all results of other existing models from the literature in terms of Precision, Recall, F1-Score, and Accuracy of 93 % accuracy.\",\"PeriodicalId\":346847,\"journal\":{\"name\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE58274.2023.10099735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE58274.2023.10099735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

情感分析提取人们对某一主题的感受和态度。它最近在各种各样的应用中受到了很多关注。总的来说,对医疗保健的情感分析,特别是对使用者吸毒经历的情感分析,可能对如何加强公共卫生和做出合理的判断具有重要意义。在本文中,已经开发了基于患者评论的新方法来预测情绪以改进数据分析。然后,使用术语频率-逆文档频率(TF-IDF)提取特征。实验结果表明,随机森林分类器(RFC)在精度、召回率、F1-Score和准确率方面优于文献中所有其他现有模型的结果,准确率达到93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Classification of Drug Reviews Using Machine Learning Techniques
Sentiment analysis extracts people's feelings and attitudes about a certain subject. It has recently received a lot of interest in a variety of applications. In general, the sentiment analysis of healthcare, especially of drug experiences of users, might give substantial importance to how to enhance public health and make sound judgments. In this paper, new approaches have been developed that are based on patient reviews to predict sentiment to improve data analysis. Then, use Term Frequency-Inverse Document Frequency (TF-IDF) to extract the features. The experimental findings show that the Random Forest Classifier (RFC) beats all results of other existing models from the literature in terms of Precision, Recall, F1-Score, and Accuracy of 93 % accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信