基于Zernike矩的心脏病检测方法

A. Das
{"title":"基于Zernike矩的心脏病检测方法","authors":"A. Das","doi":"10.1109/ICCICT.2012.6398224","DOIUrl":null,"url":null,"abstract":"This paper details a Zernike Moments and Fuzzy-C-Means clustering based technique to identify the nature of an ECG image. The proposed method can detect whether the ECG image belongs to a normal heart or a diseased heart. In the second case it can indicate the disease of the heart also. The method has been tested on four databases- congestive heart failure database, ventricular tachyarrhythmia database, atrial fibrillation database and normal sinus rhythm database. The experiment shows that the proposed technique is successful in 98.7% cases.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Zernike Moment based methodology for heart disease detection\",\"authors\":\"A. Das\",\"doi\":\"10.1109/ICCICT.2012.6398224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper details a Zernike Moments and Fuzzy-C-Means clustering based technique to identify the nature of an ECG image. The proposed method can detect whether the ECG image belongs to a normal heart or a diseased heart. In the second case it can indicate the disease of the heart also. The method has been tested on four databases- congestive heart failure database, ventricular tachyarrhythmia database, atrial fibrillation database and normal sinus rhythm database. The experiment shows that the proposed technique is successful in 98.7% cases.\",\"PeriodicalId\":319467,\"journal\":{\"name\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICT.2012.6398224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文详细介绍了一种基于Zernike矩和Fuzzy-C-Means聚类的心电图像性质识别技术。该方法可以检测心电图像是属于正常心脏还是病变心脏。在第二种情况下,它也可以表明心脏疾病。该方法已在充血性心力衰竭数据库、室性心动过速数据库、心房颤动数据库和正常窦性心律数据库四个数据库上进行了测试。实验表明,该方法的成功率为98.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Zernike Moment based methodology for heart disease detection
This paper details a Zernike Moments and Fuzzy-C-Means clustering based technique to identify the nature of an ECG image. The proposed method can detect whether the ECG image belongs to a normal heart or a diseased heart. In the second case it can indicate the disease of the heart also. The method has been tested on four databases- congestive heart failure database, ventricular tachyarrhythmia database, atrial fibrillation database and normal sinus rhythm database. The experiment shows that the proposed technique is successful in 98.7% cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信