GPU上动态规划的流水线实现

Makoto Miyazaki, Susumu Matsumae
{"title":"GPU上动态规划的流水线实现","authors":"Makoto Miyazaki, Susumu Matsumae","doi":"10.1109/CANDARW.2018.00063","DOIUrl":null,"url":null,"abstract":"In this paper, we show the effectiveness of a pipeline implementation of Dynamic Programming (DP) on GPU. As an example, we parallelize a typical DP program where each element of its solution table is calculated in order by semigroup computations among some already computed elements in the table. We implement the DP program on GPU in a pipeline fashion, i.e., we use GPU cores for supporting pipeline-stages so that many elements of the solution table are partially computed in parallel at one time. Our implementation can determine one output value per one computational step, which is faster than the standard parallel implementation whose strategy is to speed up each semi-group computations. We evaluate the performance of our implementation and verify its speedup.","PeriodicalId":329439,"journal":{"name":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Pipeline Implementation for Dynamic Programming on GPU\",\"authors\":\"Makoto Miyazaki, Susumu Matsumae\",\"doi\":\"10.1109/CANDARW.2018.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show the effectiveness of a pipeline implementation of Dynamic Programming (DP) on GPU. As an example, we parallelize a typical DP program where each element of its solution table is calculated in order by semigroup computations among some already computed elements in the table. We implement the DP program on GPU in a pipeline fashion, i.e., we use GPU cores for supporting pipeline-stages so that many elements of the solution table are partially computed in parallel at one time. Our implementation can determine one output value per one computational step, which is faster than the standard parallel implementation whose strategy is to speed up each semi-group computations. We evaluate the performance of our implementation and verify its speedup.\",\"PeriodicalId\":329439,\"journal\":{\"name\":\"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDARW.2018.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们展示了动态规划(DP)在GPU上的流水线实现的有效性。作为一个例子,我们并行化了一个典型的DP程序,其中解表中的每个元素都是通过半群计算在表中一些已经计算过的元素之间按顺序计算的。我们以流水线方式在GPU上实现DP程序,也就是说,我们使用GPU内核来支持流水线阶段,以便解决表的许多元素一次部分并行计算。我们的实现可以在每一个计算步骤中确定一个输出值,这比标准并行实现更快,后者的策略是加速每个半组计算。我们评估了我们实现的性能并验证了它的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pipeline Implementation for Dynamic Programming on GPU
In this paper, we show the effectiveness of a pipeline implementation of Dynamic Programming (DP) on GPU. As an example, we parallelize a typical DP program where each element of its solution table is calculated in order by semigroup computations among some already computed elements in the table. We implement the DP program on GPU in a pipeline fashion, i.e., we use GPU cores for supporting pipeline-stages so that many elements of the solution table are partially computed in parallel at one time. Our implementation can determine one output value per one computational step, which is faster than the standard parallel implementation whose strategy is to speed up each semi-group computations. We evaluate the performance of our implementation and verify its speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信