提出了一种基于SNOMED CT本体的糖尿病诊断病例库编码方法

Shaker El-Sappagh, Mohammed M Elmogy, A. Riad, H. Zaghloul, F. Badria
{"title":"提出了一种基于SNOMED CT本体的糖尿病诊断病例库编码方法","authors":"Shaker El-Sappagh, Mohammed M Elmogy, A. Riad, H. Zaghloul, F. Badria","doi":"10.1109/ICCES.2014.7030954","DOIUrl":null,"url":null,"abstract":"Domain knowledge ontology supports the implementation of intelligent Case Based Reasoning (CBR) systems. Standardized terminologies support efficient indexing and processing of patient data. It is an essential element for the implementation of knowledge-based clinical decision support by exploiting pre-defined semantic relationships, both hierarchical and non-hierarchical in nature. Systemized Nomenclature of Medicine-Clinical Terms (SNOMED CT) is the most comprehensive and complete terminology. This paper proposes an encoding methodology for clinical data using SNOMED CT. A case study for a diabetes diagnosis data set will be tested where SNOMED CT provides a concept coverage of ~75% for its clinical terms. Custom codes will be provided for uncovered terms. The encoded data set is derived from electronic health record database, and it represents a case base knowledge. The collected concept IDs will be used to build a domain ontology for diabetes diagnosis CBR. This ontology contains 550 concept IDs. The encoded case base and the domain ontology can be used to build a knowledge intensive CBR.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base\",\"authors\":\"Shaker El-Sappagh, Mohammed M Elmogy, A. Riad, H. Zaghloul, F. Badria\",\"doi\":\"10.1109/ICCES.2014.7030954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain knowledge ontology supports the implementation of intelligent Case Based Reasoning (CBR) systems. Standardized terminologies support efficient indexing and processing of patient data. It is an essential element for the implementation of knowledge-based clinical decision support by exploiting pre-defined semantic relationships, both hierarchical and non-hierarchical in nature. Systemized Nomenclature of Medicine-Clinical Terms (SNOMED CT) is the most comprehensive and complete terminology. This paper proposes an encoding methodology for clinical data using SNOMED CT. A case study for a diabetes diagnosis data set will be tested where SNOMED CT provides a concept coverage of ~75% for its clinical terms. Custom codes will be provided for uncovered terms. The encoded data set is derived from electronic health record database, and it represents a case base knowledge. The collected concept IDs will be used to build a domain ontology for diabetes diagnosis CBR. This ontology contains 550 concept IDs. The encoded case base and the domain ontology can be used to build a knowledge intensive CBR.\",\"PeriodicalId\":339697,\"journal\":{\"name\":\"2014 9th International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 9th International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2014.7030954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

领域知识本体支持智能案例推理(CBR)系统的实现。标准化的术语支持对患者数据进行高效的索引和处理。它是通过利用预定义的语义关系来实现基于知识的临床决策支持的基本要素,这些语义关系在本质上是分层的和非分层的。《医学临床术语系统命名法》是我国最全面、最完整的医学临床术语。本文提出了一种SNOMED CT临床数据的编码方法。将测试一个糖尿病诊断数据集的案例研究,其中SNOMED CT为其临床术语提供了约75%的概念覆盖率。未覆盖条款将提供自定义代码。编码的数据集来源于电子病历数据库,它代表了一个病例库知识。收集到的概念id将用于构建糖尿病诊断CBR的领域本体。这个本体包含550个概念id。编码后的案例库和领域本体可用于构建知识密集型案例推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base
Domain knowledge ontology supports the implementation of intelligent Case Based Reasoning (CBR) systems. Standardized terminologies support efficient indexing and processing of patient data. It is an essential element for the implementation of knowledge-based clinical decision support by exploiting pre-defined semantic relationships, both hierarchical and non-hierarchical in nature. Systemized Nomenclature of Medicine-Clinical Terms (SNOMED CT) is the most comprehensive and complete terminology. This paper proposes an encoding methodology for clinical data using SNOMED CT. A case study for a diabetes diagnosis data set will be tested where SNOMED CT provides a concept coverage of ~75% for its clinical terms. Custom codes will be provided for uncovered terms. The encoded data set is derived from electronic health record database, and it represents a case base knowledge. The collected concept IDs will be used to build a domain ontology for diabetes diagnosis CBR. This ontology contains 550 concept IDs. The encoded case base and the domain ontology can be used to build a knowledge intensive CBR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信