奇特征域上平衡序列的自相关和互相关

Ali Md. Arshad, Y. Nogami, Hiroto Ino, S. Uehara
{"title":"奇特征域上平衡序列的自相关和互相关","authors":"Ali Md. Arshad, Y. Nogami, Hiroto Ino, S. Uehara","doi":"10.1109/CANDAR.2016.0109","DOIUrl":null,"url":null,"abstract":"In this paper, the authors have proposed a new approach for generating multi-value sequence by utilizing primitive element, trace function, and k-th power residue symbol over odd characteristic field. Let p be an odd prime and Fp be an odd characteristic prime field, m be the degree of the primitive polynomial f(x), and k be a prime factor of p-1. In details, the procedure for generating multi-value sequence is as follows: primitive polynomial f(x) generates maximum length vector sequence, then trace function Tr(.) maps an element of extension field Fpm to an element of prime field Fp, next non-zero scalar A 2 Fp is added to the trace value, and finally k-th power residue symbol is utilized to map the scalars into (k + 1) values multi-value sequence. In this method, a certain mapping function Mk(.) is utilized during the autocorrelation calculation. Hence, our proposed multi-value sequence has some parameters such as p, m, k, and A. This paper discusses the period, autocorrelation, and cross-correlation properties of proposed multi-value sequence based on some experimental results.","PeriodicalId":322499,"journal":{"name":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Auto and Cross Correlation of Well Balanced Sequence over Odd Characteristic Field\",\"authors\":\"Ali Md. Arshad, Y. Nogami, Hiroto Ino, S. Uehara\",\"doi\":\"10.1109/CANDAR.2016.0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors have proposed a new approach for generating multi-value sequence by utilizing primitive element, trace function, and k-th power residue symbol over odd characteristic field. Let p be an odd prime and Fp be an odd characteristic prime field, m be the degree of the primitive polynomial f(x), and k be a prime factor of p-1. In details, the procedure for generating multi-value sequence is as follows: primitive polynomial f(x) generates maximum length vector sequence, then trace function Tr(.) maps an element of extension field Fpm to an element of prime field Fp, next non-zero scalar A 2 Fp is added to the trace value, and finally k-th power residue symbol is utilized to map the scalars into (k + 1) values multi-value sequence. In this method, a certain mapping function Mk(.) is utilized during the autocorrelation calculation. Hence, our proposed multi-value sequence has some parameters such as p, m, k, and A. This paper discusses the period, autocorrelation, and cross-correlation properties of proposed multi-value sequence based on some experimental results.\",\"PeriodicalId\":322499,\"journal\":{\"name\":\"2016 Fourth International Symposium on Computing and Networking (CANDAR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Symposium on Computing and Networking (CANDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDAR.2016.0109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDAR.2016.0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用基元、迹函数和奇特征域上的k次幂残差符号生成多值序列的新方法。设p是一个奇素数,Fp是一个奇特征素数域,m是原始多项式f(x)的阶,k是p-1的一个素数因子。生成多值序列的过程如下:原始多项式f(x)生成最大长度向量序列,跟踪函数Tr(.)将可拓域Fpm的一个元素映射到素域Fp的一个元素,然后将非零标量a2fp加到跟踪值上,最后利用k次幂余数符号将标量映射到(k + 1)个值的多值序列。该方法利用一定的映射函数Mk(.)进行自相关计算。因此,我们提出的多值序列有一些参数,如p、m、k、a。本文根据一些实验结果讨论了提出的多值序列的周期、自相关和互相关性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto and Cross Correlation of Well Balanced Sequence over Odd Characteristic Field
In this paper, the authors have proposed a new approach for generating multi-value sequence by utilizing primitive element, trace function, and k-th power residue symbol over odd characteristic field. Let p be an odd prime and Fp be an odd characteristic prime field, m be the degree of the primitive polynomial f(x), and k be a prime factor of p-1. In details, the procedure for generating multi-value sequence is as follows: primitive polynomial f(x) generates maximum length vector sequence, then trace function Tr(.) maps an element of extension field Fpm to an element of prime field Fp, next non-zero scalar A 2 Fp is added to the trace value, and finally k-th power residue symbol is utilized to map the scalars into (k + 1) values multi-value sequence. In this method, a certain mapping function Mk(.) is utilized during the autocorrelation calculation. Hence, our proposed multi-value sequence has some parameters such as p, m, k, and A. This paper discusses the period, autocorrelation, and cross-correlation properties of proposed multi-value sequence based on some experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信