通过对能源绩效证书的探索性分析,可视化高分辨率能源地图

T. Cerquitelli, Evelina Di Corso, Stefano Proto, Alfonso Capozzoli, D. Mazzarelli, Andrea Nasso, Elena Baralis, M. Mellia, Silvia Casagrande, Martina Tamburini
{"title":"通过对能源绩效证书的探索性分析,可视化高分辨率能源地图","authors":"T. Cerquitelli, Evelina Di Corso, Stefano Proto, Alfonso Capozzoli, D. Mazzarelli, Andrea Nasso, Elena Baralis, M. Mellia, Silvia Casagrande, Martina Tamburini","doi":"10.1109/SEST.2019.8849061","DOIUrl":null,"url":null,"abstract":"This paper presents a new data mining engine, named EXTREMA (EXploitation of Turin high Resolution Energy MAps), to automatically visualise high-resolution energy maps exploring interesting and human-readable knowledge items from large collections of EPCs. EXTREMA, developed in Python, generates geo-located maps to summarise the main relationships among variables affecting the energy efficiency of buildings at different spatial granularity levels. The visualised knowledge is discovered through a two-level data analytics methodology based on exploratory and unsupervised algorithms. First an unsupervised algorithm divides EPCs into homogeneous groups of buildings with similar thermo-physical characteristics. Each group is then locally characterised through interesting patterns to concisely represent each group. The experimental evaluation, performed on a real dataset collected in a major Italian city in North-West Italy, demonstrates the effectiveness of EXTREMA in extracting and graphically display on geo-located multivariate energy maps a manageable set of human-readable knowledge items.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visualising high-resolution energy maps through the exploratory analysis of energy performance certificates\",\"authors\":\"T. Cerquitelli, Evelina Di Corso, Stefano Proto, Alfonso Capozzoli, D. Mazzarelli, Andrea Nasso, Elena Baralis, M. Mellia, Silvia Casagrande, Martina Tamburini\",\"doi\":\"10.1109/SEST.2019.8849061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new data mining engine, named EXTREMA (EXploitation of Turin high Resolution Energy MAps), to automatically visualise high-resolution energy maps exploring interesting and human-readable knowledge items from large collections of EPCs. EXTREMA, developed in Python, generates geo-located maps to summarise the main relationships among variables affecting the energy efficiency of buildings at different spatial granularity levels. The visualised knowledge is discovered through a two-level data analytics methodology based on exploratory and unsupervised algorithms. First an unsupervised algorithm divides EPCs into homogeneous groups of buildings with similar thermo-physical characteristics. Each group is then locally characterised through interesting patterns to concisely represent each group. The experimental evaluation, performed on a real dataset collected in a major Italian city in North-West Italy, demonstrates the effectiveness of EXTREMA in extracting and graphically display on geo-located multivariate energy maps a manageable set of human-readable knowledge items.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一个新的数据挖掘引擎,名为EXTREMA(都灵高分辨率能源地图的开发),用于自动可视化高分辨率能源地图,从大量epc集合中探索有趣的和人类可读的知识项目。用Python开发的EXTREMA生成地理定位地图,以总结不同空间粒度级别上影响建筑物能源效率的变量之间的主要关系。可视化的知识是通过基于探索性和无监督算法的两级数据分析方法发现的。首先,一种无监督算法将epc划分为具有相似热物理特征的同类建筑组。然后通过有趣的模式对每个群体进行局部特征描述,以简洁地表示每个群体。实验评估在意大利西北部一个主要城市收集的真实数据集上进行,证明了EXTREMA在提取和图形化显示地理位置多元能量地图上的有效性,这是一组可管理的人类可读知识项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualising high-resolution energy maps through the exploratory analysis of energy performance certificates
This paper presents a new data mining engine, named EXTREMA (EXploitation of Turin high Resolution Energy MAps), to automatically visualise high-resolution energy maps exploring interesting and human-readable knowledge items from large collections of EPCs. EXTREMA, developed in Python, generates geo-located maps to summarise the main relationships among variables affecting the energy efficiency of buildings at different spatial granularity levels. The visualised knowledge is discovered through a two-level data analytics methodology based on exploratory and unsupervised algorithms. First an unsupervised algorithm divides EPCs into homogeneous groups of buildings with similar thermo-physical characteristics. Each group is then locally characterised through interesting patterns to concisely represent each group. The experimental evaluation, performed on a real dataset collected in a major Italian city in North-West Italy, demonstrates the effectiveness of EXTREMA in extracting and graphically display on geo-located multivariate energy maps a manageable set of human-readable knowledge items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信