{"title":"FinGAR:电刺激和机械刺激的结合,实现高保真的触觉呈现","authors":"Vibol Yem, Ryuta Okazaki, H. Kajimoto","doi":"10.1145/2929464.2929474","DOIUrl":null,"url":null,"abstract":"It is known that our touch sensation is a result of activities of four types of mechanoreceptors, each of which responds to different types of skin deformation; pressure, low frequency vibration, high frequency vibration, and shear stretch. If we could selectively activate these receptors, we could combine and present any types of tactile sensation. This approach has been studied but not fully achieved. In our study, we developed FinGAR (Finger Glove for Augmented Reality), in which we combined electrical and mechanical stimulation to selectively stimulate these four channels and thus to achieve high-fidelity tactile sensation. The electrical stimulation with array of electrodes presents pressure and low frequency vibration with high spatial resolution, while the mechanical stimulation with DC motor presents high frequency vibration and shear deformation of the whole finger. Furthermore, FinGAR is lightweight, simple in mechanism, easy to wear, and does not disturb the natural movement of the finger, all of which are necessary for general-purpose virtual reality system.","PeriodicalId":314962,"journal":{"name":"ACM SIGGRAPH 2016 Emerging Technologies","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"FinGAR: combination of electrical and mechanical stimulation for high-fidelity tactile presentation\",\"authors\":\"Vibol Yem, Ryuta Okazaki, H. Kajimoto\",\"doi\":\"10.1145/2929464.2929474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that our touch sensation is a result of activities of four types of mechanoreceptors, each of which responds to different types of skin deformation; pressure, low frequency vibration, high frequency vibration, and shear stretch. If we could selectively activate these receptors, we could combine and present any types of tactile sensation. This approach has been studied but not fully achieved. In our study, we developed FinGAR (Finger Glove for Augmented Reality), in which we combined electrical and mechanical stimulation to selectively stimulate these four channels and thus to achieve high-fidelity tactile sensation. The electrical stimulation with array of electrodes presents pressure and low frequency vibration with high spatial resolution, while the mechanical stimulation with DC motor presents high frequency vibration and shear deformation of the whole finger. Furthermore, FinGAR is lightweight, simple in mechanism, easy to wear, and does not disturb the natural movement of the finger, all of which are necessary for general-purpose virtual reality system.\",\"PeriodicalId\":314962,\"journal\":{\"name\":\"ACM SIGGRAPH 2016 Emerging Technologies\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2016 Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2929464.2929474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2929464.2929474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FinGAR: combination of electrical and mechanical stimulation for high-fidelity tactile presentation
It is known that our touch sensation is a result of activities of four types of mechanoreceptors, each of which responds to different types of skin deformation; pressure, low frequency vibration, high frequency vibration, and shear stretch. If we could selectively activate these receptors, we could combine and present any types of tactile sensation. This approach has been studied but not fully achieved. In our study, we developed FinGAR (Finger Glove for Augmented Reality), in which we combined electrical and mechanical stimulation to selectively stimulate these four channels and thus to achieve high-fidelity tactile sensation. The electrical stimulation with array of electrodes presents pressure and low frequency vibration with high spatial resolution, while the mechanical stimulation with DC motor presents high frequency vibration and shear deformation of the whole finger. Furthermore, FinGAR is lightweight, simple in mechanism, easy to wear, and does not disturb the natural movement of the finger, all of which are necessary for general-purpose virtual reality system.