C. Kaplan, D. Salesin
{"title":"Escherization","authors":"C. Kaplan, D. Salesin","doi":"10.1145/344779.345022","DOIUrl":null,"url":null,"abstract":"This paper introduces and presents a solution to the “Escherization” problem: given a closed figure in the plane, find a new closed figure that is similar to the original and tiles the plane. Our solution works by using a simulated annealer to optimize over a parameterization of the “isohedral” tilings, a class of tilings that us flexible enough to encompass nearly all of Escher's own tilings, and yet simple enough to be encoded and explored by a computer. We also describe a representation for isohedral tilings that allows for highly interactive viewing and rendering. We demonstrate the use of these tools—along with several additional techniques for adding decorations to tilings—with a variety of original ornamental designs.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344779.345022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

本文介绍并提出了一种“Escherization”问题的解决方法:给定平面上的一个封闭图形,找到一个与原封闭图形相似的新封闭图形,并对平面进行贴片。我们的解决方案是通过使用模拟退火器来优化“等面体”平铺的参数化,这类平铺足够灵活,可以包含几乎所有Escher自己的平铺,但又足够简单,可以用计算机编码和探索。我们还描述了一种允许高度交互式观看和渲染的等面体平铺的表示。我们展示了这些工具的使用,以及在瓷砖上添加装饰的其他几种技术,以及各种原始的装饰设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Escherization
This paper introduces and presents a solution to the “Escherization” problem: given a closed figure in the plane, find a new closed figure that is similar to the original and tiles the plane. Our solution works by using a simulated annealer to optimize over a parameterization of the “isohedral” tilings, a class of tilings that us flexible enough to encompass nearly all of Escher's own tilings, and yet simple enough to be encoded and explored by a computer. We also describe a representation for isohedral tilings that allows for highly interactive viewing and rendering. We demonstrate the use of these tools—along with several additional techniques for adding decorations to tilings—with a variety of original ornamental designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信