基于隶属函数的模糊模型及其在多变量非线性模型预测控制中的应用

Renhong Zhao, Rakesh Govind
{"title":"基于隶属函数的模糊模型及其在多变量非线性模型预测控制中的应用","authors":"Renhong Zhao, Rakesh Govind","doi":"10.1109/FUZZY.1994.343932","DOIUrl":null,"url":null,"abstract":"The nonlinear processes in direct digital control systems can be modeled by the membership function-based fuzzy models proposed in this paper. The two-dimensional membership functions used by this paper are identified by using limited process response data. Instead of using membership functions to represent the belonging to a set this paper uses the membership functions to represent the gradual deviation from the known states. The membership function-based fuzzy models are effective nonlinear models which can be used for multivariable nonlinear predictive control in which the process interaction is used to enhance the control action rather than being decoupled like in linear control.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Membership function-based fuzzy model and its applications to multivariable nonlinear model-predictive control\",\"authors\":\"Renhong Zhao, Rakesh Govind\",\"doi\":\"10.1109/FUZZY.1994.343932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear processes in direct digital control systems can be modeled by the membership function-based fuzzy models proposed in this paper. The two-dimensional membership functions used by this paper are identified by using limited process response data. Instead of using membership functions to represent the belonging to a set this paper uses the membership functions to represent the gradual deviation from the known states. The membership function-based fuzzy models are effective nonlinear models which can be used for multivariable nonlinear predictive control in which the process interaction is used to enhance the control action rather than being decoupled like in linear control.<<ETX>>\",\"PeriodicalId\":153967,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1994.343932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出的基于隶属函数的模糊模型可以对直接数字控制系统中的非线性过程进行建模。本文所使用的二维隶属函数是利用有限的过程响应数据来识别的。本文不再使用隶属度函数来表示隶属于某个集合,而是使用隶属度函数来表示与已知状态的逐渐偏离。基于隶属函数的模糊模型是一种有效的非线性模型,可用于多变量非线性预测控制,该模型利用过程交互来增强控制作用,而不是像线性控制那样解耦
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membership function-based fuzzy model and its applications to multivariable nonlinear model-predictive control
The nonlinear processes in direct digital control systems can be modeled by the membership function-based fuzzy models proposed in this paper. The two-dimensional membership functions used by this paper are identified by using limited process response data. Instead of using membership functions to represent the belonging to a set this paper uses the membership functions to represent the gradual deviation from the known states. The membership function-based fuzzy models are effective nonlinear models which can be used for multivariable nonlinear predictive control in which the process interaction is used to enhance the control action rather than being decoupled like in linear control.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信