一台用于气候研究的个人超级计算机

J. Hoe, C. Hill, A. Adcroft
{"title":"一台用于气候研究的个人超级计算机","authors":"J. Hoe, C. Hill, A. Adcroft","doi":"10.1145/331532.331591","DOIUrl":null,"url":null,"abstract":"We describe and analyze the performance of a cluster of personal computers dedicated to coupled climate simulations. This climate modeling system performs comparably to state-of-the-art supercomputers and yet is affordable by individual research groups, thus enabling more spontaneous application of high-end numerical models to climate science. The cluster's novelty centers around the Arctic Switch Fabric and the StarT-X network interface, a system-area interconnect substrate developed at MIT. A significant fraction of the interconnect's hardware performance is made available to our climate model through an application-specific communication library. In addition to reporting the overall application performance of our cluster, we develop an analytical performance model of our application. Based on this model, we define a metric, Potential Floating-Pointing Performance, which we use to quantify the role of high-speed interconnects in determining application performance. Our results show that a high-performance interconnect, in conjunction with a light-weight application-specific library, provides efficient support for our fine-grain parallel application on an otherwise general-purpose commodity system.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Personal Supercomputer for Climate Research\",\"authors\":\"J. Hoe, C. Hill, A. Adcroft\",\"doi\":\"10.1145/331532.331591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe and analyze the performance of a cluster of personal computers dedicated to coupled climate simulations. This climate modeling system performs comparably to state-of-the-art supercomputers and yet is affordable by individual research groups, thus enabling more spontaneous application of high-end numerical models to climate science. The cluster's novelty centers around the Arctic Switch Fabric and the StarT-X network interface, a system-area interconnect substrate developed at MIT. A significant fraction of the interconnect's hardware performance is made available to our climate model through an application-specific communication library. In addition to reporting the overall application performance of our cluster, we develop an analytical performance model of our application. Based on this model, we define a metric, Potential Floating-Pointing Performance, which we use to quantify the role of high-speed interconnects in determining application performance. Our results show that a high-performance interconnect, in conjunction with a light-weight application-specific library, provides efficient support for our fine-grain parallel application on an otherwise general-purpose commodity system.\",\"PeriodicalId\":354898,\"journal\":{\"name\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/331532.331591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们描述和分析了一组专用于耦合气候模拟的个人计算机的性能。这种气候模拟系统的性能可与最先进的超级计算机相媲美,但个别研究小组负担得起,因此可以更自然地将高端数值模型应用于气候科学。该集群的新颖之处在于北极交换结构和StarT-X网络接口,这是麻省理工学院开发的一种系统区域互连基板。互连的硬件性能的很大一部分是通过特定于应用程序的通信库提供给我们的气候模型的。除了报告集群的整体应用程序性能外,我们还开发了应用程序的分析性能模型。基于该模型,我们定义了一个度量,即潜在浮点性能,我们使用它来量化高速互连在确定应用程序性能中的作用。我们的结果表明,一个高性能的互连,结合一个轻量级的特定于应用程序的库,为我们的细粒度并行应用程序在一个通用的商业系统上提供了有效的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Personal Supercomputer for Climate Research
We describe and analyze the performance of a cluster of personal computers dedicated to coupled climate simulations. This climate modeling system performs comparably to state-of-the-art supercomputers and yet is affordable by individual research groups, thus enabling more spontaneous application of high-end numerical models to climate science. The cluster's novelty centers around the Arctic Switch Fabric and the StarT-X network interface, a system-area interconnect substrate developed at MIT. A significant fraction of the interconnect's hardware performance is made available to our climate model through an application-specific communication library. In addition to reporting the overall application performance of our cluster, we develop an analytical performance model of our application. Based on this model, we define a metric, Potential Floating-Pointing Performance, which we use to quantify the role of high-speed interconnects in determining application performance. Our results show that a high-performance interconnect, in conjunction with a light-weight application-specific library, provides efficient support for our fine-grain parallel application on an otherwise general-purpose commodity system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信