在基于决策树的入侵检测系统中应用信息增益来减少模型构建时间

Moises S. De Sousa, Carlos Eduardo Lacerda Veiga, R. D. O. Albuquerque, W. Giozza
{"title":"在基于决策树的入侵检测系统中应用信息增益来减少模型构建时间","authors":"Moises S. De Sousa, Carlos Eduardo Lacerda Veiga, R. D. O. Albuquerque, W. Giozza","doi":"10.23919/cisti54924.2022.9820579","DOIUrl":null,"url":null,"abstract":"Due to the large amount of sensitive data generated by websites, it is possible to understand the progress of attacks to their databases. This work proposes an intrusion detection system based on data mining and machine learning techniques to detect and mitigate the damage caused by these attacks. It adopts the Information Gain method of selecting attributes in order to reduce the model-building time without affecting the classification performance. Using the CIC-IDS 2017 dataset, this work shows how different decision tree algorithms (Random Forest and J48 Algorithm) behave even if they receive equal parameters and data. Using Information Gain to select attributes, the proposed system achieves a processing time reduction of up to 90%.","PeriodicalId":187896,"journal":{"name":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"476 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Information Gain applied to reduce model-building time in decision-tree-based intrusion detection system\",\"authors\":\"Moises S. De Sousa, Carlos Eduardo Lacerda Veiga, R. D. O. Albuquerque, W. Giozza\",\"doi\":\"10.23919/cisti54924.2022.9820579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the large amount of sensitive data generated by websites, it is possible to understand the progress of attacks to their databases. This work proposes an intrusion detection system based on data mining and machine learning techniques to detect and mitigate the damage caused by these attacks. It adopts the Information Gain method of selecting attributes in order to reduce the model-building time without affecting the classification performance. Using the CIC-IDS 2017 dataset, this work shows how different decision tree algorithms (Random Forest and J48 Algorithm) behave even if they receive equal parameters and data. Using Information Gain to select attributes, the proposed system achieves a processing time reduction of up to 90%.\",\"PeriodicalId\":187896,\"journal\":{\"name\":\"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)\",\"volume\":\"476 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cisti54924.2022.9820579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cisti54924.2022.9820579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于网站会产生大量的敏感数据,因此可以了解对其数据库的攻击进度。本文提出了一种基于数据挖掘和机器学习技术的入侵检测系统,以检测和减轻这些攻击造成的损害。为了在不影响分类性能的前提下减少建模时间,采用了选择属性的Information Gain方法。使用CIC-IDS 2017数据集,这项工作显示了不同的决策树算法(随机森林和J48算法)如何表现,即使它们接收到相同的参数和数据。利用信息增益来选择属性,使系统的处理时间缩短了90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Gain applied to reduce model-building time in decision-tree-based intrusion detection system
Due to the large amount of sensitive data generated by websites, it is possible to understand the progress of attacks to their databases. This work proposes an intrusion detection system based on data mining and machine learning techniques to detect and mitigate the damage caused by these attacks. It adopts the Information Gain method of selecting attributes in order to reduce the model-building time without affecting the classification performance. Using the CIC-IDS 2017 dataset, this work shows how different decision tree algorithms (Random Forest and J48 Algorithm) behave even if they receive equal parameters and data. Using Information Gain to select attributes, the proposed system achieves a processing time reduction of up to 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信