M. Zibaii, L. Dargahi, Abdolaziz Ronaghi, Farshad Abedzadeh, Sareh Pandamoz, Saeid Salehi, Zahra Fattahi, A. Haghparast, H. Latifi
{"title":"光遗传学和光电技术对脑功能操纵的影响","authors":"M. Zibaii, L. Dargahi, Abdolaziz Ronaghi, Farshad Abedzadeh, Sareh Pandamoz, Saeid Salehi, Zahra Fattahi, A. Haghparast, H. Latifi","doi":"10.5220/0005842303210332","DOIUrl":null,"url":null,"abstract":"Optogenetics comprises a growing family of related techniques for the optical interrogation and control of excitable cells. Combining genetic targeting with light delivery systems makes it possible to drive or silence subpopulations of neurons and the related behaviours, with a high spatiotemporal precision. Since optical manipulation is fast, selective, and minimally invasive, it provides distinct advantages over traditional electrical means or pharmacological approaches for cell perturbation. Here we showed in anesthetized rat that optogenetic stimulation of nucleus accumbens (NAc) neurons increased neural activation. We labelled a population of neurons activated with channelrhodopsin-2 (ChR2) and later optically stimulated these neurons by using an optrode and recorded spontaneous action potentials from the one neuron.","PeriodicalId":222009,"journal":{"name":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optogentics and optrode technology to brain function manupulation\",\"authors\":\"M. Zibaii, L. Dargahi, Abdolaziz Ronaghi, Farshad Abedzadeh, Sareh Pandamoz, Saeid Salehi, Zahra Fattahi, A. Haghparast, H. Latifi\",\"doi\":\"10.5220/0005842303210332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optogenetics comprises a growing family of related techniques for the optical interrogation and control of excitable cells. Combining genetic targeting with light delivery systems makes it possible to drive or silence subpopulations of neurons and the related behaviours, with a high spatiotemporal precision. Since optical manipulation is fast, selective, and minimally invasive, it provides distinct advantages over traditional electrical means or pharmacological approaches for cell perturbation. Here we showed in anesthetized rat that optogenetic stimulation of nucleus accumbens (NAc) neurons increased neural activation. We labelled a population of neurons activated with channelrhodopsin-2 (ChR2) and later optically stimulated these neurons by using an optrode and recorded spontaneous action potentials from the one neuron.\",\"PeriodicalId\":222009,\"journal\":{\"name\":\"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005842303210332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005842303210332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optogentics and optrode technology to brain function manupulation
Optogenetics comprises a growing family of related techniques for the optical interrogation and control of excitable cells. Combining genetic targeting with light delivery systems makes it possible to drive or silence subpopulations of neurons and the related behaviours, with a high spatiotemporal precision. Since optical manipulation is fast, selective, and minimally invasive, it provides distinct advantages over traditional electrical means or pharmacological approaches for cell perturbation. Here we showed in anesthetized rat that optogenetic stimulation of nucleus accumbens (NAc) neurons increased neural activation. We labelled a population of neurons activated with channelrhodopsin-2 (ChR2) and later optically stimulated these neurons by using an optrode and recorded spontaneous action potentials from the one neuron.