多标签互补标签学习的无偏风险估计

Yi Gao, Miao Xu, Min-Ling Zhang
{"title":"多标签互补标签学习的无偏风险估计","authors":"Yi Gao, Miao Xu, Min-Ling Zhang","doi":"10.24963/ijcai.2023/415","DOIUrl":null,"url":null,"abstract":"Multi-label learning (MLL) usually requires assigning multiple relevant labels to each instance. While a fully supervised MLL dataset needs a large amount of labeling effort, using complementary labels can help alleviate this burden. However, current approaches to learning from complementary labels are mainly designed for multi-class learning and assume that each instance has a single relevant label. This means that these approaches cannot be easily applied to MLL when only complementary labels are provided, where the number of relevant labels is unknown and can vary across instances. In this paper, we first propose the unbiased risk estimator for the multi-labeled complementary label learning (MLCLL) problem. We also provide an estimation error bound to ensure the convergence of the empirical risk estimator. In some cases, the unbiased estimator may give unbounded gradients for certain loss functions and result in overfitting. To mitigate this problem, we improve the risk estimator by minimizing a proper loss function, which has been shown to improve gradient updates. Our experimental results demonstrate the effectiveness of the proposed approach on various datasets.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unbiased Risk Estimator to Multi-Labeled Complementary Label Learning\",\"authors\":\"Yi Gao, Miao Xu, Min-Ling Zhang\",\"doi\":\"10.24963/ijcai.2023/415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label learning (MLL) usually requires assigning multiple relevant labels to each instance. While a fully supervised MLL dataset needs a large amount of labeling effort, using complementary labels can help alleviate this burden. However, current approaches to learning from complementary labels are mainly designed for multi-class learning and assume that each instance has a single relevant label. This means that these approaches cannot be easily applied to MLL when only complementary labels are provided, where the number of relevant labels is unknown and can vary across instances. In this paper, we first propose the unbiased risk estimator for the multi-labeled complementary label learning (MLCLL) problem. We also provide an estimation error bound to ensure the convergence of the empirical risk estimator. In some cases, the unbiased estimator may give unbounded gradients for certain loss functions and result in overfitting. To mitigate this problem, we improve the risk estimator by minimizing a proper loss function, which has been shown to improve gradient updates. Our experimental results demonstrate the effectiveness of the proposed approach on various datasets.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多标签学习(MLL)通常需要为每个实例分配多个相关标签。虽然完全监督的MLL数据集需要大量的标记工作,但使用补充标签可以帮助减轻这一负担。然而,目前从互补标签中学习的方法主要是为多类学习设计的,并且假设每个实例都有一个单独的相关标签。这意味着,当只提供互补标签时,这些方法不能很容易地应用于MLL,其中相关标签的数量是未知的,并且可能因实例而异。本文首先提出了多标签互补标签学习(MLCLL)问题的无偏风险估计量。为了保证经验风险估计量的收敛性,我们还给出了估计误差界。在某些情况下,无偏估计量可能对某些损失函数给出无界梯度并导致过拟合。为了缓解这个问题,我们通过最小化适当的损失函数来改进风险估计器,这已经被证明可以改善梯度更新。我们的实验结果证明了该方法在各种数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbiased Risk Estimator to Multi-Labeled Complementary Label Learning
Multi-label learning (MLL) usually requires assigning multiple relevant labels to each instance. While a fully supervised MLL dataset needs a large amount of labeling effort, using complementary labels can help alleviate this burden. However, current approaches to learning from complementary labels are mainly designed for multi-class learning and assume that each instance has a single relevant label. This means that these approaches cannot be easily applied to MLL when only complementary labels are provided, where the number of relevant labels is unknown and can vary across instances. In this paper, we first propose the unbiased risk estimator for the multi-labeled complementary label learning (MLCLL) problem. We also provide an estimation error bound to ensure the convergence of the empirical risk estimator. In some cases, the unbiased estimator may give unbounded gradients for certain loss functions and result in overfitting. To mitigate this problem, we improve the risk estimator by minimizing a proper loss function, which has been shown to improve gradient updates. Our experimental results demonstrate the effectiveness of the proposed approach on various datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信