{"title":"数字图像的混合高斯和均匀脉冲噪声鲁棒估计分析","authors":"Jie Xiang Yang, H. Wu","doi":"10.1109/ICDSP.2009.5201092","DOIUrl":null,"url":null,"abstract":"Previous work on mixed Gaussian and impulse noise (MGIN) reduction has impressive quantitative results. However, the estimation of the statistical properties of the MGIN model that varies within a wide range has not been fully investigated. In this paper, statistical properties of the MGIN model are analyzed in detail with a robust estimation. The paper also proposes a two-stage impulse-then-Gaussian filter for MGIN suppression. which makes use of the estimated statistical properties of MGIN. The proposed filtering scheme applies a impulse proportion adaptive median filter (IPAMF) to impulse noise suppression, and a state-of-the-art discrete cosine transform (DCT) domain filter to Gaussian noise reduction. Numerical results, in terms of the peak signal-to-noise ratio (PSNR), and visual samples demonstrate that the proposed filtering scheme achieves better performance of noise reduction than two existing MGIN filtering schemes.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mixed Guassian and uniform impulse noise analysis using robust estimation for digital images\",\"authors\":\"Jie Xiang Yang, H. Wu\",\"doi\":\"10.1109/ICDSP.2009.5201092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work on mixed Gaussian and impulse noise (MGIN) reduction has impressive quantitative results. However, the estimation of the statistical properties of the MGIN model that varies within a wide range has not been fully investigated. In this paper, statistical properties of the MGIN model are analyzed in detail with a robust estimation. The paper also proposes a two-stage impulse-then-Gaussian filter for MGIN suppression. which makes use of the estimated statistical properties of MGIN. The proposed filtering scheme applies a impulse proportion adaptive median filter (IPAMF) to impulse noise suppression, and a state-of-the-art discrete cosine transform (DCT) domain filter to Gaussian noise reduction. Numerical results, in terms of the peak signal-to-noise ratio (PSNR), and visual samples demonstrate that the proposed filtering scheme achieves better performance of noise reduction than two existing MGIN filtering schemes.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed Guassian and uniform impulse noise analysis using robust estimation for digital images
Previous work on mixed Gaussian and impulse noise (MGIN) reduction has impressive quantitative results. However, the estimation of the statistical properties of the MGIN model that varies within a wide range has not been fully investigated. In this paper, statistical properties of the MGIN model are analyzed in detail with a robust estimation. The paper also proposes a two-stage impulse-then-Gaussian filter for MGIN suppression. which makes use of the estimated statistical properties of MGIN. The proposed filtering scheme applies a impulse proportion adaptive median filter (IPAMF) to impulse noise suppression, and a state-of-the-art discrete cosine transform (DCT) domain filter to Gaussian noise reduction. Numerical results, in terms of the peak signal-to-noise ratio (PSNR), and visual samples demonstrate that the proposed filtering scheme achieves better performance of noise reduction than two existing MGIN filtering schemes.