超降维的张量-列参数化

Mingyuan Bai, S. Choy, Xin Song, Junbin Gao
{"title":"超降维的张量-列参数化","authors":"Mingyuan Bai, S. Choy, Xin Song, Junbin Gao","doi":"10.1109/ICBK.2019.00011","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction is a conventional yet crucial field in machine learning. In dimensionality reduction, locality preserving projections (LPP) are a vital method designed to avoid the sensitivity to outliers based on data graph information. However, in terms of the extreme outliers, the performance of LPP is still largely undermined by them. For the case when the input data are matrices or tensors, LPP can only process them by flattening them into an extensively long vector and thus result in the loss of structural information. Furthermore, the assumption for LPP is that the dimension of data should be smaller than the number of instances. Therefore, for high-dimensional data analysis, LPP is not appropriate. In this case, the tensor-train decomposition comes to the stage and demonstrates the efficiency and effectiveness to capture these spatial relations. In consequence, a tensor-train parameterization for ultra dimensionality reduction (TTPUDR) is proposed in this paper, where the conventional LPP mapping is tensorized through tensor-trains and the objective function in the traditional LPP is substituted with the Frobenius norm instead of the squared Frobenius norm to enhance the robustness of the model. We also utilize the manifold optimization to assist the learning process of the model. We evaluate the performance of TTPUDR on classification problems versus the state-of-the-art methods and the past axiomatic methods and TTPUDR significantly outperforms them.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor-Train Parameterization for Ultra Dimensionality Reduction\",\"authors\":\"Mingyuan Bai, S. Choy, Xin Song, Junbin Gao\",\"doi\":\"10.1109/ICBK.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensionality reduction is a conventional yet crucial field in machine learning. In dimensionality reduction, locality preserving projections (LPP) are a vital method designed to avoid the sensitivity to outliers based on data graph information. However, in terms of the extreme outliers, the performance of LPP is still largely undermined by them. For the case when the input data are matrices or tensors, LPP can only process them by flattening them into an extensively long vector and thus result in the loss of structural information. Furthermore, the assumption for LPP is that the dimension of data should be smaller than the number of instances. Therefore, for high-dimensional data analysis, LPP is not appropriate. In this case, the tensor-train decomposition comes to the stage and demonstrates the efficiency and effectiveness to capture these spatial relations. In consequence, a tensor-train parameterization for ultra dimensionality reduction (TTPUDR) is proposed in this paper, where the conventional LPP mapping is tensorized through tensor-trains and the objective function in the traditional LPP is substituted with the Frobenius norm instead of the squared Frobenius norm to enhance the robustness of the model. We also utilize the manifold optimization to assist the learning process of the model. We evaluate the performance of TTPUDR on classification problems versus the state-of-the-art methods and the past axiomatic methods and TTPUDR significantly outperforms them.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降维是机器学习中一个传统而又关键的领域。在降维中,局部保持投影(locality preserving projection, LPP)是避免数据图信息对异常值敏感的一种重要方法。然而,就极端异常值而言,LPP的表现在很大程度上仍然受到它们的影响。对于输入数据是矩阵或张量的情况,LPP只能通过将它们扁平化成一个很长的向量来处理它们,从而导致结构信息的丢失。此外,LPP的假设是数据的维度应该小于实例的数量。因此,对于高维数据分析,LPP是不合适的。在这种情况下,张量列分解就出现了,并展示了捕获这些空间关系的效率和有效性。为此,本文提出了一种超降维张量序列参数化方法(TTPUDR),通过张量序列对传统LPP映射进行张量化,并将传统LPP中的目标函数替换为Frobenius范数而不是Frobenius范数的平方,以增强模型的鲁棒性。我们还利用流形优化来辅助模型的学习过程。我们评估了TTPUDR在分类问题上的性能,与最先进的方法和过去的公理方法相比,TTPUDR明显优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor-Train Parameterization for Ultra Dimensionality Reduction
Dimensionality reduction is a conventional yet crucial field in machine learning. In dimensionality reduction, locality preserving projections (LPP) are a vital method designed to avoid the sensitivity to outliers based on data graph information. However, in terms of the extreme outliers, the performance of LPP is still largely undermined by them. For the case when the input data are matrices or tensors, LPP can only process them by flattening them into an extensively long vector and thus result in the loss of structural information. Furthermore, the assumption for LPP is that the dimension of data should be smaller than the number of instances. Therefore, for high-dimensional data analysis, LPP is not appropriate. In this case, the tensor-train decomposition comes to the stage and demonstrates the efficiency and effectiveness to capture these spatial relations. In consequence, a tensor-train parameterization for ultra dimensionality reduction (TTPUDR) is proposed in this paper, where the conventional LPP mapping is tensorized through tensor-trains and the objective function in the traditional LPP is substituted with the Frobenius norm instead of the squared Frobenius norm to enhance the robustness of the model. We also utilize the manifold optimization to assist the learning process of the model. We evaluate the performance of TTPUDR on classification problems versus the state-of-the-art methods and the past axiomatic methods and TTPUDR significantly outperforms them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信