Marc Nicodeme, C. Dossal, F. Turcu, Y. Berthoumieu
{"title":"压缩感知噪声鲁棒性的Lipschitz界:两种算法","authors":"Marc Nicodeme, C. Dossal, F. Turcu, Y. Berthoumieu","doi":"10.1109/SYNASC.2014.19","DOIUrl":null,"url":null,"abstract":"The paper deals with numerical estimations of Lipschitz bounds relating locally the reconstruction error to the measurement error in the compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relatively to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. The paper provides two algorithms for computing dual certificates that optimize their related reconstruction error bounds. We give a greedy algorithm that provides a fast approximate solution, and a convex-projection algorithm that computes the exact optimum.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms\",\"authors\":\"Marc Nicodeme, C. Dossal, F. Turcu, Y. Berthoumieu\",\"doi\":\"10.1109/SYNASC.2014.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with numerical estimations of Lipschitz bounds relating locally the reconstruction error to the measurement error in the compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relatively to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. The paper provides two algorithms for computing dual certificates that optimize their related reconstruction error bounds. We give a greedy algorithm that provides a fast approximate solution, and a convex-projection algorithm that computes the exact optimum.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms
The paper deals with numerical estimations of Lipschitz bounds relating locally the reconstruction error to the measurement error in the compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relatively to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. The paper provides two algorithms for computing dual certificates that optimize their related reconstruction error bounds. We give a greedy algorithm that provides a fast approximate solution, and a convex-projection algorithm that computes the exact optimum.