压缩感知噪声鲁棒性的Lipschitz界:两种算法

Marc Nicodeme, C. Dossal, F. Turcu, Y. Berthoumieu
{"title":"压缩感知噪声鲁棒性的Lipschitz界:两种算法","authors":"Marc Nicodeme, C. Dossal, F. Turcu, Y. Berthoumieu","doi":"10.1109/SYNASC.2014.19","DOIUrl":null,"url":null,"abstract":"The paper deals with numerical estimations of Lipschitz bounds relating locally the reconstruction error to the measurement error in the compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relatively to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. The paper provides two algorithms for computing dual certificates that optimize their related reconstruction error bounds. We give a greedy algorithm that provides a fast approximate solution, and a convex-projection algorithm that computes the exact optimum.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms\",\"authors\":\"Marc Nicodeme, C. Dossal, F. Turcu, Y. Berthoumieu\",\"doi\":\"10.1109/SYNASC.2014.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with numerical estimations of Lipschitz bounds relating locally the reconstruction error to the measurement error in the compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relatively to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. The paper provides two algorithms for computing dual certificates that optimize their related reconstruction error bounds. We give a greedy algorithm that provides a fast approximate solution, and a convex-projection algorithm that computes the exact optimum.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了压缩感知框架中重构误差与测量误差局部相关的Lipschitz界的数值估计。该领域最近的理论论文将这些边界相对于某些称为对偶证书的向量族进行参数化,对偶证书是几个重建准则的基础。本文提供了两种计算双证书的算法,优化了它们相关的重构错误边界。我们给出了一个贪婪算法,它提供了一个快速的近似解,和一个凸投影算法,计算精确的最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms
The paper deals with numerical estimations of Lipschitz bounds relating locally the reconstruction error to the measurement error in the compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relatively to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. The paper provides two algorithms for computing dual certificates that optimize their related reconstruction error bounds. We give a greedy algorithm that provides a fast approximate solution, and a convex-projection algorithm that computes the exact optimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信