{"title":"MT-Diet:自动基于智能手机的饮食评估与红外图像","authors":"Junghyo Lee, Ayan Banerjee, S. Gupta","doi":"10.1109/PERCOM.2016.7456506","DOIUrl":null,"url":null,"abstract":"In this paper, we propose MT-Diet, a smartphone-based automated diet monitoring system that interfaces a thermal camera with a smartphone and identifies types of food consumed at the click of a button. The system uses thermal maps of a food plate to increase accuracy of segmentation and extraction of food parts, and combines thermal and visual images to improve accuracy in the detection of cooked food. Test results on 80 different types of cooked food show that MT-Diet can isolate food parts with an accuracy of 97.5% and determine the type of food with an accuracy of 88.93%, which is a significant improvement (nearly 25%) over the state-of-the-art.","PeriodicalId":275797,"journal":{"name":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"MT-Diet: Automated smartphone based diet assessment with infrared images\",\"authors\":\"Junghyo Lee, Ayan Banerjee, S. Gupta\",\"doi\":\"10.1109/PERCOM.2016.7456506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose MT-Diet, a smartphone-based automated diet monitoring system that interfaces a thermal camera with a smartphone and identifies types of food consumed at the click of a button. The system uses thermal maps of a food plate to increase accuracy of segmentation and extraction of food parts, and combines thermal and visual images to improve accuracy in the detection of cooked food. Test results on 80 different types of cooked food show that MT-Diet can isolate food parts with an accuracy of 97.5% and determine the type of food with an accuracy of 88.93%, which is a significant improvement (nearly 25%) over the state-of-the-art.\",\"PeriodicalId\":275797,\"journal\":{\"name\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2016.7456506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2016.7456506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MT-Diet: Automated smartphone based diet assessment with infrared images
In this paper, we propose MT-Diet, a smartphone-based automated diet monitoring system that interfaces a thermal camera with a smartphone and identifies types of food consumed at the click of a button. The system uses thermal maps of a food plate to increase accuracy of segmentation and extraction of food parts, and combines thermal and visual images to improve accuracy in the detection of cooked food. Test results on 80 different types of cooked food show that MT-Diet can isolate food parts with an accuracy of 97.5% and determine the type of food with an accuracy of 88.93%, which is a significant improvement (nearly 25%) over the state-of-the-art.