增益矩阵的ε容量与可容忍扰动:离散时间摄动线性系统。

Journals Iosr, O.Zakary, M.Rachik
{"title":"增益矩阵的ε容量与可容忍扰动:离散时间摄动线性系统。","authors":"Journals Iosr, O.Zakary, M.Rachik","doi":"10.6084/M9.FIGSHARE.1445954.V1","DOIUrl":null,"url":null,"abstract":"Discrete-time linear systems with perturbed initial state are considered. A disturbance that infects the initial state is said to be $\\epsilon$-tolerable if the corresponding output signal is relatively insensitive to their effects. In this paper, we will define a new set that characterize each gain matrix K and the associated feedback control law ui=Kxi, this set will be called the $\\epsilon$-capacity of the gain matrix K. The set of all possible gain matrix that makes the system insensitive to all disturbances is noted $\\Phi\\cdot$. The characterization of $\\Phi\\cdot$ is investigated, and we propose an algorithmic approach that allows to determine if a control law is belongs to $\\Phi\\cdot$ or not. Numerical simulations are given.","PeriodicalId":265389,"journal":{"name":"arXiv: Systems and Control","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The $ε$-capacity of a gain matrix and tolerable disturbances: Discrete-time perturbed linear systems.\",\"authors\":\"Journals Iosr, O.Zakary, M.Rachik\",\"doi\":\"10.6084/M9.FIGSHARE.1445954.V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete-time linear systems with perturbed initial state are considered. A disturbance that infects the initial state is said to be $\\\\epsilon$-tolerable if the corresponding output signal is relatively insensitive to their effects. In this paper, we will define a new set that characterize each gain matrix K and the associated feedback control law ui=Kxi, this set will be called the $\\\\epsilon$-capacity of the gain matrix K. The set of all possible gain matrix that makes the system insensitive to all disturbances is noted $\\\\Phi\\\\cdot$. The characterization of $\\\\Phi\\\\cdot$ is investigated, and we propose an algorithmic approach that allows to determine if a control law is belongs to $\\\\Phi\\\\cdot$ or not. Numerical simulations are given.\",\"PeriodicalId\":265389,\"journal\":{\"name\":\"arXiv: Systems and Control\",\"volume\":\"335 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6084/M9.FIGSHARE.1445954.V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6084/M9.FIGSHARE.1445954.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究具有摄动初始状态的离散线性系统。如果相应的输出信号对其影响相对不敏感,则认为影响初始状态的干扰是$\epsilon$ -可容忍的。在本文中,我们将定义一个新的集合来表征每个增益矩阵K和相关的反馈控制律ui=Kxi,这个集合将被称为增益矩阵K的$\epsilon$ -容量。所有可能的增益矩阵的集合使得系统对所有干扰不敏感$\Phi\cdot$。研究了$\Phi\cdot$的特征,并提出了一种算法方法,可以确定控制律是否属于$\Phi\cdot$。给出了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The $ε$-capacity of a gain matrix and tolerable disturbances: Discrete-time perturbed linear systems.
Discrete-time linear systems with perturbed initial state are considered. A disturbance that infects the initial state is said to be $\epsilon$-tolerable if the corresponding output signal is relatively insensitive to their effects. In this paper, we will define a new set that characterize each gain matrix K and the associated feedback control law ui=Kxi, this set will be called the $\epsilon$-capacity of the gain matrix K. The set of all possible gain matrix that makes the system insensitive to all disturbances is noted $\Phi\cdot$. The characterization of $\Phi\cdot$ is investigated, and we propose an algorithmic approach that allows to determine if a control law is belongs to $\Phi\cdot$ or not. Numerical simulations are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信