基于内容的多层次时间记忆分类器图像检索系统

Xia Zhituo, Ruan Hao, W. Hao
{"title":"基于内容的多层次时间记忆分类器图像检索系统","authors":"Xia Zhituo, Ruan Hao, W. Hao","doi":"10.1109/ISCID.2012.253","DOIUrl":null,"url":null,"abstract":"This paper presents a content-based image retrieval (CBIR) system using multiple Hierarchical Temporal Memory classifiers. in order to improve the efficiency of image management and retrieval, the CBIR system proposed in this paper take advantage of Hierarchical Temporal Memory Algorithm which replicates the structure and function of the human neocortex. in this study, multiple Hierarchical Temporal Memory classifiers were used to provide an intelligent system that aims to understand a query image's category semantics, rather than the low-level image features for image indexing and retrieval. the system supports query by example image, the experiments based on Internet images show the efficiency of our method.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Content-Based Image Retrieval System Using Multiple Hierarchical Temporal Memory Classifiers\",\"authors\":\"Xia Zhituo, Ruan Hao, W. Hao\",\"doi\":\"10.1109/ISCID.2012.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a content-based image retrieval (CBIR) system using multiple Hierarchical Temporal Memory classifiers. in order to improve the efficiency of image management and retrieval, the CBIR system proposed in this paper take advantage of Hierarchical Temporal Memory Algorithm which replicates the structure and function of the human neocortex. in this study, multiple Hierarchical Temporal Memory classifiers were used to provide an intelligent system that aims to understand a query image's category semantics, rather than the low-level image features for image indexing and retrieval. the system supports query by example image, the experiments based on Internet images show the efficiency of our method.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于内容的图像检索(CBIR)系统,该系统采用多层时间记忆分类器。为了提高图像管理和检索的效率,本文提出的CBIR系统利用了复制人类大脑新皮层结构和功能的分层时间记忆算法。在本研究中,使用多个分层时间记忆分类器来提供一个智能系统,旨在理解查询图像的类别语义,而不是低级图像特征,用于图像索引和检索。系统支持实例图片查询,基于网络图片的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Content-Based Image Retrieval System Using Multiple Hierarchical Temporal Memory Classifiers
This paper presents a content-based image retrieval (CBIR) system using multiple Hierarchical Temporal Memory classifiers. in order to improve the efficiency of image management and retrieval, the CBIR system proposed in this paper take advantage of Hierarchical Temporal Memory Algorithm which replicates the structure and function of the human neocortex. in this study, multiple Hierarchical Temporal Memory classifiers were used to provide an intelligent system that aims to understand a query image's category semantics, rather than the low-level image features for image indexing and retrieval. the system supports query by example image, the experiments based on Internet images show the efficiency of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信