{"title":"漫游机机械手的组态控制","authors":"H. Seraji","doi":"10.1109/CCA.1994.381271","DOIUrl":null,"url":null,"abstract":"This paper presents a simple online approach for motion control of rover-mounted manipulators. An integrated kinematic model of the rover-plus-manipulator system is derived which incorporates the nonholonomic rover constraint with the holonomic end-effector constraint. The redundancy introduced by the rover mobility is exploited to perform a set of user-specified additional tasks during the end-effector motion. The configuration control approach is utilized to satisfy the nonholonomic rover constraint, while accomplishing the end-effector motion and the redundancy resolution goal simultaneously. This framework allows the user to assign weighting factors to the rover movement and manipulator motion, as well as to each task specification. The computational efficiency of the control scheme makes it particularly suitable for real-time implementation. The proposed method is applied to a planar two-jointed arm mounted on a rover, and computer simulation results are presented for illustration.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Configuration control of rover-mounted manipulators\",\"authors\":\"H. Seraji\",\"doi\":\"10.1109/CCA.1994.381271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simple online approach for motion control of rover-mounted manipulators. An integrated kinematic model of the rover-plus-manipulator system is derived which incorporates the nonholonomic rover constraint with the holonomic end-effector constraint. The redundancy introduced by the rover mobility is exploited to perform a set of user-specified additional tasks during the end-effector motion. The configuration control approach is utilized to satisfy the nonholonomic rover constraint, while accomplishing the end-effector motion and the redundancy resolution goal simultaneously. This framework allows the user to assign weighting factors to the rover movement and manipulator motion, as well as to each task specification. The computational efficiency of the control scheme makes it particularly suitable for real-time implementation. The proposed method is applied to a planar two-jointed arm mounted on a rover, and computer simulation results are presented for illustration.<<ETX>>\",\"PeriodicalId\":173370,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1994.381271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Configuration control of rover-mounted manipulators
This paper presents a simple online approach for motion control of rover-mounted manipulators. An integrated kinematic model of the rover-plus-manipulator system is derived which incorporates the nonholonomic rover constraint with the holonomic end-effector constraint. The redundancy introduced by the rover mobility is exploited to perform a set of user-specified additional tasks during the end-effector motion. The configuration control approach is utilized to satisfy the nonholonomic rover constraint, while accomplishing the end-effector motion and the redundancy resolution goal simultaneously. This framework allows the user to assign weighting factors to the rover movement and manipulator motion, as well as to each task specification. The computational efficiency of the control scheme makes it particularly suitable for real-time implementation. The proposed method is applied to a planar two-jointed arm mounted on a rover, and computer simulation results are presented for illustration.<>