利用计算机视觉和深度学习对扫描探针显微镜图像进行纳米粒子识别:改进的U-net方法

Mikhail F. Liz, A. Nartova, A. V. Matveev, A. Okunev
{"title":"利用计算机视觉和深度学习对扫描探针显微镜图像进行纳米粒子识别:改进的U-net方法","authors":"Mikhail F. Liz, A. Nartova, A. V. Matveev, A. Okunev","doi":"10.1109/S.A.I.ence50533.2020.9303184","DOIUrl":null,"url":null,"abstract":"Particles characterization is a significant part of numerous studies in material sciences and engineering technologies. Microscopy images of materials containing particles are usually analyzed by operator with manual counting and measuring of particle sizing by a software ruler. Traditional automated image analyzing methods such as edge detection, segmentation, etc. are not universal, giving poor results on noisy pictures and need empirical fitted parameters. To realize automatic method of particles recognition on scanning tunneling microscopy (STM) data we used U-net and modified U-net neural networks, which was trained on ten STM images contained 1918 particles. Verification on 3 pictures with 695 particles showed mAP=0.12 for modified U-net neural network.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Computer Vision and Deep Learning for Nanoparticle Recognition on Scanning Probe Microscopy Images: Modified U-net Approach\",\"authors\":\"Mikhail F. Liz, A. Nartova, A. V. Matveev, A. Okunev\",\"doi\":\"10.1109/S.A.I.ence50533.2020.9303184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particles characterization is a significant part of numerous studies in material sciences and engineering technologies. Microscopy images of materials containing particles are usually analyzed by operator with manual counting and measuring of particle sizing by a software ruler. Traditional automated image analyzing methods such as edge detection, segmentation, etc. are not universal, giving poor results on noisy pictures and need empirical fitted parameters. To realize automatic method of particles recognition on scanning tunneling microscopy (STM) data we used U-net and modified U-net neural networks, which was trained on ten STM images contained 1918 particles. Verification on 3 pictures with 695 particles showed mAP=0.12 for modified U-net neural network.\",\"PeriodicalId\":201402,\"journal\":{\"name\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S.A.I.ence50533.2020.9303184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

颗粒表征是材料科学和工程技术众多研究的重要组成部分。含有颗粒的材料的显微镜图像通常由操作员用人工计数和用软件尺子测量粒度进行分析。传统的自动图像分析方法,如边缘检测、分割等,不具有普适性,对噪声图像的处理效果较差,需要经验拟合参数。为了实现基于扫描隧道显微镜(STM)数据的粒子自动识别方法,我们使用U-net和改进的U-net神经网络对10幅包含1918个粒子的扫描隧道显微镜(STM)图像进行训练。对3张695个粒子的图片进行验证,改进的U-net神经网络mAP=0.12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Computer Vision and Deep Learning for Nanoparticle Recognition on Scanning Probe Microscopy Images: Modified U-net Approach
Particles characterization is a significant part of numerous studies in material sciences and engineering technologies. Microscopy images of materials containing particles are usually analyzed by operator with manual counting and measuring of particle sizing by a software ruler. Traditional automated image analyzing methods such as edge detection, segmentation, etc. are not universal, giving poor results on noisy pictures and need empirical fitted parameters. To realize automatic method of particles recognition on scanning tunneling microscopy (STM) data we used U-net and modified U-net neural networks, which was trained on ten STM images contained 1918 particles. Verification on 3 pictures with 695 particles showed mAP=0.12 for modified U-net neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信