Mikhail F. Liz, A. Nartova, A. V. Matveev, A. Okunev
{"title":"利用计算机视觉和深度学习对扫描探针显微镜图像进行纳米粒子识别:改进的U-net方法","authors":"Mikhail F. Liz, A. Nartova, A. V. Matveev, A. Okunev","doi":"10.1109/S.A.I.ence50533.2020.9303184","DOIUrl":null,"url":null,"abstract":"Particles characterization is a significant part of numerous studies in material sciences and engineering technologies. Microscopy images of materials containing particles are usually analyzed by operator with manual counting and measuring of particle sizing by a software ruler. Traditional automated image analyzing methods such as edge detection, segmentation, etc. are not universal, giving poor results on noisy pictures and need empirical fitted parameters. To realize automatic method of particles recognition on scanning tunneling microscopy (STM) data we used U-net and modified U-net neural networks, which was trained on ten STM images contained 1918 particles. Verification on 3 pictures with 695 particles showed mAP=0.12 for modified U-net neural network.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Computer Vision and Deep Learning for Nanoparticle Recognition on Scanning Probe Microscopy Images: Modified U-net Approach\",\"authors\":\"Mikhail F. Liz, A. Nartova, A. V. Matveev, A. Okunev\",\"doi\":\"10.1109/S.A.I.ence50533.2020.9303184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particles characterization is a significant part of numerous studies in material sciences and engineering technologies. Microscopy images of materials containing particles are usually analyzed by operator with manual counting and measuring of particle sizing by a software ruler. Traditional automated image analyzing methods such as edge detection, segmentation, etc. are not universal, giving poor results on noisy pictures and need empirical fitted parameters. To realize automatic method of particles recognition on scanning tunneling microscopy (STM) data we used U-net and modified U-net neural networks, which was trained on ten STM images contained 1918 particles. Verification on 3 pictures with 695 particles showed mAP=0.12 for modified U-net neural network.\",\"PeriodicalId\":201402,\"journal\":{\"name\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S.A.I.ence50533.2020.9303184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Computer Vision and Deep Learning for Nanoparticle Recognition on Scanning Probe Microscopy Images: Modified U-net Approach
Particles characterization is a significant part of numerous studies in material sciences and engineering technologies. Microscopy images of materials containing particles are usually analyzed by operator with manual counting and measuring of particle sizing by a software ruler. Traditional automated image analyzing methods such as edge detection, segmentation, etc. are not universal, giving poor results on noisy pictures and need empirical fitted parameters. To realize automatic method of particles recognition on scanning tunneling microscopy (STM) data we used U-net and modified U-net neural networks, which was trained on ten STM images contained 1918 particles. Verification on 3 pictures with 695 particles showed mAP=0.12 for modified U-net neural network.