{"title":"一种基于模型的刚性物体识别方法","authors":"Chee Boon Chong, T. Tan, F. Lim","doi":"10.1109/ICPR.2006.103","DOIUrl":null,"url":null,"abstract":"Most object recognition systems require large databases of real images for classifier training. To collect real images for this purpose is a difficult and expensive process. This paper introduces a unified framework based on the creation and use of synthetic images for training various classifiers to achieve recognition of real-world objects. A 3D model of the object (i.e. trolley in this case) is constructed from a minimum of two photographs. The constructed 3D model is used to automatically generate the relevant synthetic images that are subsequently used to train the Adaboost and support vector machine-based recognition systems. Experimental results obtained are very encouraging suggesting that synthetically generated images generated by our approach can augment the real training samples used in current recognition systems","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model-based Approach for Rigid Object Recognition\",\"authors\":\"Chee Boon Chong, T. Tan, F. Lim\",\"doi\":\"10.1109/ICPR.2006.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most object recognition systems require large databases of real images for classifier training. To collect real images for this purpose is a difficult and expensive process. This paper introduces a unified framework based on the creation and use of synthetic images for training various classifiers to achieve recognition of real-world objects. A 3D model of the object (i.e. trolley in this case) is constructed from a minimum of two photographs. The constructed 3D model is used to automatically generate the relevant synthetic images that are subsequently used to train the Adaboost and support vector machine-based recognition systems. Experimental results obtained are very encouraging suggesting that synthetically generated images generated by our approach can augment the real training samples used in current recognition systems\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Model-based Approach for Rigid Object Recognition
Most object recognition systems require large databases of real images for classifier training. To collect real images for this purpose is a difficult and expensive process. This paper introduces a unified framework based on the creation and use of synthetic images for training various classifiers to achieve recognition of real-world objects. A 3D model of the object (i.e. trolley in this case) is constructed from a minimum of two photographs. The constructed 3D model is used to automatically generate the relevant synthetic images that are subsequently used to train the Adaboost and support vector machine-based recognition systems. Experimental results obtained are very encouraging suggesting that synthetically generated images generated by our approach can augment the real training samples used in current recognition systems