基于ReLU门控循环单元的水声目标识别

Xiaodong Sun, Xiaohan Yin, Yaguang Yin, Peishun Liu, Liang Wang, Ruichun Tang
{"title":"基于ReLU门控循环单元的水声目标识别","authors":"Xiaodong Sun, Xiaohan Yin, Yaguang Yin, Peishun Liu, Liang Wang, Ruichun Tang","doi":"10.1145/3449301.3449309","DOIUrl":null,"url":null,"abstract":"In general, the traditional acoustic models'(e. g. Gaussian mixture model, GMM) for underwater acoustic target recognition (UATR) performance in sequential data has so far been disappointing. In contrast, Recurrent Neural Network (RNN) is a powerful tool for sequential data. This paper investigates the Gated Recurrent Unit (GRU), which is a variant of the RNN. We use the Rectified Linear Unit (ReLU) activation, and carry out experiments on the real acoustic dataset of ships. The recognition accuracy on the dataset with noise reach 86.1%, on dataset without noise reach 96.4%. Both performances are better than other baselines.","PeriodicalId":429684,"journal":{"name":"Proceedings of the 6th International Conference on Robotics and Artificial Intelligence","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Underwater Acoustic Target Recognition Based on ReLU Gated Recurrent Unit\",\"authors\":\"Xiaodong Sun, Xiaohan Yin, Yaguang Yin, Peishun Liu, Liang Wang, Ruichun Tang\",\"doi\":\"10.1145/3449301.3449309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, the traditional acoustic models'(e. g. Gaussian mixture model, GMM) for underwater acoustic target recognition (UATR) performance in sequential data has so far been disappointing. In contrast, Recurrent Neural Network (RNN) is a powerful tool for sequential data. This paper investigates the Gated Recurrent Unit (GRU), which is a variant of the RNN. We use the Rectified Linear Unit (ReLU) activation, and carry out experiments on the real acoustic dataset of ships. The recognition accuracy on the dataset with noise reach 86.1%, on dataset without noise reach 96.4%. Both performances are better than other baselines.\",\"PeriodicalId\":429684,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Robotics and Artificial Intelligence\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Robotics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3449301.3449309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449301.3449309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一般来说,传统的声学模型(例如:g.高斯混合模型(Gaussian mixture model, GMM)用于水声目标识别(UATR)在序列数据中的表现迄今令人失望。相比之下,递归神经网络(RNN)是处理序列数据的强大工具。本文研究了门控循环单元(GRU),它是RNN的一种变体。采用整流线性单元(ReLU)激活方法,在舰船真实声学数据集上进行了实验。在有噪声数据集上的识别准确率达到86.1%,在无噪声数据集上的识别准确率达到96.4%。这两种表现都优于其他基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater Acoustic Target Recognition Based on ReLU Gated Recurrent Unit
In general, the traditional acoustic models'(e. g. Gaussian mixture model, GMM) for underwater acoustic target recognition (UATR) performance in sequential data has so far been disappointing. In contrast, Recurrent Neural Network (RNN) is a powerful tool for sequential data. This paper investigates the Gated Recurrent Unit (GRU), which is a variant of the RNN. We use the Rectified Linear Unit (ReLU) activation, and carry out experiments on the real acoustic dataset of ships. The recognition accuracy on the dataset with noise reach 86.1%, on dataset without noise reach 96.4%. Both performances are better than other baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信