前臂肌肉多通道表面肌电图估计腕部瞬间屈曲角度

B. Borbely, P. Szolgay
{"title":"前臂肌肉多通道表面肌电图估计腕部瞬间屈曲角度","authors":"B. Borbely, P. Szolgay","doi":"10.1109/BIOCAS.2013.6679643","DOIUrl":null,"url":null,"abstract":"A pattern recognition based classification method is proposed to estimate wrist flexion angles from electrical activities of forearm muscles. Spatial movement data and multi-channel myoelectric signals from forearm muscles were collected experimentally during periodic wrist flexion and extension movements using an ultrasound based movement analyser system. The recorded marker coordinates were transformed into joint angles using OpenSim, an open source simulation tool for biomechanical analysis. EMG data were segmented according to specific ranges of the calculated wrist flexion angle to form different classes for pattern recognition. The parameter space of the used classification algorithm was explored with a selected subset of values to find the optimal parameter vector giving maximal classification performance.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating the instantaneous wrist flexion angle from multi-channel surface EMG of forearm muscles\",\"authors\":\"B. Borbely, P. Szolgay\",\"doi\":\"10.1109/BIOCAS.2013.6679643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pattern recognition based classification method is proposed to estimate wrist flexion angles from electrical activities of forearm muscles. Spatial movement data and multi-channel myoelectric signals from forearm muscles were collected experimentally during periodic wrist flexion and extension movements using an ultrasound based movement analyser system. The recorded marker coordinates were transformed into joint angles using OpenSim, an open source simulation tool for biomechanical analysis. EMG data were segmented according to specific ranges of the calculated wrist flexion angle to form different classes for pattern recognition. The parameter space of the used classification algorithm was explored with a selected subset of values to find the optimal parameter vector giving maximal classification performance.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2013.6679643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2013.6679643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于模式识别的从前臂肌肉电活动中估计手腕屈曲角度的分类方法。利用基于超声的运动分析系统,实验采集了周期性腕关节屈伸运动时前臂肌肉的空间运动数据和多通道肌电信号。利用开源生物力学分析仿真工具OpenSim将记录的标记坐标转换为关节角度。根据计算出的腕关节屈曲角度的特定范围对肌电数据进行分割,形成不同的类别进行模式识别。选取一组值对所使用的分类算法的参数空间进行探索,以找到分类性能最大的最优参数向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the instantaneous wrist flexion angle from multi-channel surface EMG of forearm muscles
A pattern recognition based classification method is proposed to estimate wrist flexion angles from electrical activities of forearm muscles. Spatial movement data and multi-channel myoelectric signals from forearm muscles were collected experimentally during periodic wrist flexion and extension movements using an ultrasound based movement analyser system. The recorded marker coordinates were transformed into joint angles using OpenSim, an open source simulation tool for biomechanical analysis. EMG data were segmented according to specific ranges of the calculated wrist flexion angle to form different classes for pattern recognition. The parameter space of the used classification algorithm was explored with a selected subset of values to find the optimal parameter vector giving maximal classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信