{"title":"FBG应变声发射同步测量系统的研制(用于固体火箭发动机复合材料燃烧室结构健康监测)","authors":"T. Nakajima, E. Sato, H. Tsuda, A. Sato, N. Kawai","doi":"10.1299/KIKAIA.78.728","DOIUrl":null,"url":null,"abstract":"A structural health monitoring system using multiple fiber Bragg grating sensors (FBG sensors) was developed. The system was designed to measure a large and a fast strain change and also to measure acoustic emissions ( AE ) simultaneously. The strain up to 1% and up to 100 kHz was considered. A multiple fiber ring laser was adopted as a light source, which consists of a multiple erbium-doped fiber amplifier (EDFA), an optical circulator, optical couplers and FBG sensors. Multiple fiber ring lasing wavelengths depended on strains loaded to FBG sensors. A CFRP beam bending test was carried out to confirm the possibility of simultaneous measurement of both strain and AE signals from a single FBG sensor. In the test, signals from a conventional electric resistive strain gage and a piezo-electric AE sensor were revealed equivalent to those from the FBG sensor. The system will be applied to development of composite structures in aerospace field such as Epsilon Launch Vehicle.","PeriodicalId":388675,"journal":{"name":"Transactions of the Japan Society of Mechanical Engineers. A","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of simultaneous measurement system for strain and AE using FBG sensors (for structural health monitoring of solid rocket motor composite chambers)\",\"authors\":\"T. Nakajima, E. Sato, H. Tsuda, A. Sato, N. Kawai\",\"doi\":\"10.1299/KIKAIA.78.728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A structural health monitoring system using multiple fiber Bragg grating sensors (FBG sensors) was developed. The system was designed to measure a large and a fast strain change and also to measure acoustic emissions ( AE ) simultaneously. The strain up to 1% and up to 100 kHz was considered. A multiple fiber ring laser was adopted as a light source, which consists of a multiple erbium-doped fiber amplifier (EDFA), an optical circulator, optical couplers and FBG sensors. Multiple fiber ring lasing wavelengths depended on strains loaded to FBG sensors. A CFRP beam bending test was carried out to confirm the possibility of simultaneous measurement of both strain and AE signals from a single FBG sensor. In the test, signals from a conventional electric resistive strain gage and a piezo-electric AE sensor were revealed equivalent to those from the FBG sensor. The system will be applied to development of composite structures in aerospace field such as Epsilon Launch Vehicle.\",\"PeriodicalId\":388675,\"journal\":{\"name\":\"Transactions of the Japan Society of Mechanical Engineers. A\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Japan Society of Mechanical Engineers. A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/KIKAIA.78.728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society of Mechanical Engineers. A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/KIKAIA.78.728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of simultaneous measurement system for strain and AE using FBG sensors (for structural health monitoring of solid rocket motor composite chambers)
A structural health monitoring system using multiple fiber Bragg grating sensors (FBG sensors) was developed. The system was designed to measure a large and a fast strain change and also to measure acoustic emissions ( AE ) simultaneously. The strain up to 1% and up to 100 kHz was considered. A multiple fiber ring laser was adopted as a light source, which consists of a multiple erbium-doped fiber amplifier (EDFA), an optical circulator, optical couplers and FBG sensors. Multiple fiber ring lasing wavelengths depended on strains loaded to FBG sensors. A CFRP beam bending test was carried out to confirm the possibility of simultaneous measurement of both strain and AE signals from a single FBG sensor. In the test, signals from a conventional electric resistive strain gage and a piezo-electric AE sensor were revealed equivalent to those from the FBG sensor. The system will be applied to development of composite structures in aerospace field such as Epsilon Launch Vehicle.