具有增广拉格朗日和近步的非精确随机广义条件梯度

Antonio Silveti-Falls, C. Molinari, J. Fadili
{"title":"具有增广拉格朗日和近步的非精确随机广义条件梯度","authors":"Antonio Silveti-Falls, C. Molinari, J. Fadili","doi":"10.46298/jnsao-2021-6480","DOIUrl":null,"url":null,"abstract":"In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in [25], which we denote ICGALP , that allow for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion that facilitates the practical application of the algorithm to computationally intensive settings, e.g., in high (or possibly infinite) dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is able to solve composite minimization problems involving the sum of three convex proper lower-semicontinuous functions subject to an affine constraint of the form Ax = b for some bounded linear operator A. Only one of the functions in the objective is assumed to be differentiable, the other two are assumed to have an accessible proximal operator and a linear minimization oracle. As main results, we show convergence of the Lagrangian values (so-called convergence in the Bregman sense) and asymptotic feasibility of the affine constraint as well as strong convergence of the sequence of dual variables to a solution of the dual problem, in an almost sure sense. Almost sure convergence rates are given for the Lagrangian values and the feasibility gap for the ergodic primal variables. Rates in expectation are given for the Lagrangian values and the feasibility gap subsequentially in the pointwise sense. Numerical experiments verifying the predicted rates of convergence are shown as well.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step\",\"authors\":\"Antonio Silveti-Falls, C. Molinari, J. Fadili\",\"doi\":\"10.46298/jnsao-2021-6480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in [25], which we denote ICGALP , that allow for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion that facilitates the practical application of the algorithm to computationally intensive settings, e.g., in high (or possibly infinite) dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is able to solve composite minimization problems involving the sum of three convex proper lower-semicontinuous functions subject to an affine constraint of the form Ax = b for some bounded linear operator A. Only one of the functions in the objective is assumed to be differentiable, the other two are assumed to have an accessible proximal operator and a linear minimization oracle. As main results, we show convergence of the Lagrangian values (so-called convergence in the Bregman sense) and asymptotic feasibility of the affine constraint as well as strong convergence of the sequence of dual variables to a solution of the dual problem, in an almost sure sense. Almost sure convergence rates are given for the Lagrangian values and the feasibility gap for the ergodic primal variables. Rates in expectation are given for the Lagrangian values and the feasibility gap subsequentially in the pointwise sense. Numerical experiments verifying the predicted rates of convergence are shown as well.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2021-6480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2021-6480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出并分析了[25]中开发的CGALP算法的不精确和随机版本,我们将其称为ICGALP,它允许在几个重要量的计算中出现错误。特别是,这允许人们以不精确的方式计算一些梯度,近端项和/或线性最小化预言,从而促进算法在计算密集型设置中的实际应用,例如,在机器学习问题中常见的高(或可能无限)维希尔伯特空间中。该算法能够解决对某有界线性算子a的三个受仿射约束的凸固有下半连续函数和的复合极小化问题。该目标中只有一个函数被假定为可微的,另外两个函数被假定具有可达的近端算子和线性极小化oracle。作为主要结果,我们证明了拉格朗日值的收敛性(所谓的Bregman意义上的收敛性)和仿射约束的渐近可行性以及对偶变量序列对对偶问题解的强收敛性,在几乎确定的意义上。给出了拉格朗日值的几乎确定的收敛速率和遍历原始变量的可行间隙。随后给出了拉格朗日值和可行性差在点态意义上的期望率。数值实验验证了预测的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step
In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in [25], which we denote ICGALP , that allow for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion that facilitates the practical application of the algorithm to computationally intensive settings, e.g., in high (or possibly infinite) dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is able to solve composite minimization problems involving the sum of three convex proper lower-semicontinuous functions subject to an affine constraint of the form Ax = b for some bounded linear operator A. Only one of the functions in the objective is assumed to be differentiable, the other two are assumed to have an accessible proximal operator and a linear minimization oracle. As main results, we show convergence of the Lagrangian values (so-called convergence in the Bregman sense) and asymptotic feasibility of the affine constraint as well as strong convergence of the sequence of dual variables to a solution of the dual problem, in an almost sure sense. Almost sure convergence rates are given for the Lagrangian values and the feasibility gap for the ergodic primal variables. Rates in expectation are given for the Lagrangian values and the feasibility gap subsequentially in the pointwise sense. Numerical experiments verifying the predicted rates of convergence are shown as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信