TinyTricia -一个空间优化的Patricia Trie,用于透明访问边缘计算服务

Josef Hammer, H. Hellwagner
{"title":"TinyTricia -一个空间优化的Patricia Trie,用于透明访问边缘计算服务","authors":"Josef Hammer, H. Hellwagner","doi":"10.1109/UCC56403.2022.00060","DOIUrl":null,"url":null,"abstract":"Multi-access Edge Computing (MEC) is an essential piece of 5G telecommunication systems to satisfy the challenging low-latency demands of future applications. Our previous publications argue that edge computing should be transparent to clients. We introduced an efficient solution to implement such a transparent approach, leveraging Software-Defined Networking and virtual IP+port addresses for registered edge services. A core component of our architecture is a Patricia Trie, which stores all our virtual IP+port addresses. Unfortunately, most implementations of Patricia Tries are not geared toward use cases with millions of keys where a low memory footprint becomes essential. In this paper, we present TinyTric$\\dot{w}$, a space-efficient open-source implementation of a Patricia Trie for keys up to 256 bits. TinyTricia can keep track of up to half a billion (229) keys $\\leq$57 bits and up to a quarter of a billion (228-1) keys $\\leq$256 bits with tiny memory requirements. In the latter case, each key can have a data value of any type. Keys $\\leq$57 bits require only 8 to 16 bytes per key (i.e., only 0 to 8 bytes overhead per 57-bit key); for keys $\\geq$58 bits, add the key size (in whole bytes) to these values. Thus, for 16.78 million (224)57-bit keys, our solution requires between 128 and 256 MiB of memory. Unlike some other spaceefficient implementations, TinyTriia allows adding and removing keys at runtime.","PeriodicalId":203244,"journal":{"name":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TinyTricia – A Space-Optimized Patricia Trie For Transparent Access to Edge Computing Services\",\"authors\":\"Josef Hammer, H. Hellwagner\",\"doi\":\"10.1109/UCC56403.2022.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-access Edge Computing (MEC) is an essential piece of 5G telecommunication systems to satisfy the challenging low-latency demands of future applications. Our previous publications argue that edge computing should be transparent to clients. We introduced an efficient solution to implement such a transparent approach, leveraging Software-Defined Networking and virtual IP+port addresses for registered edge services. A core component of our architecture is a Patricia Trie, which stores all our virtual IP+port addresses. Unfortunately, most implementations of Patricia Tries are not geared toward use cases with millions of keys where a low memory footprint becomes essential. In this paper, we present TinyTric$\\\\dot{w}$, a space-efficient open-source implementation of a Patricia Trie for keys up to 256 bits. TinyTricia can keep track of up to half a billion (229) keys $\\\\leq$57 bits and up to a quarter of a billion (228-1) keys $\\\\leq$256 bits with tiny memory requirements. In the latter case, each key can have a data value of any type. Keys $\\\\leq$57 bits require only 8 to 16 bytes per key (i.e., only 0 to 8 bytes overhead per 57-bit key); for keys $\\\\geq$58 bits, add the key size (in whole bytes) to these values. Thus, for 16.78 million (224)57-bit keys, our solution requires between 128 and 256 MiB of memory. Unlike some other spaceefficient implementations, TinyTriia allows adding and removing keys at runtime.\",\"PeriodicalId\":203244,\"journal\":{\"name\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC56403.2022.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC56403.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多接入边缘计算(MEC)是5G电信系统的重要组成部分,可以满足未来应用中具有挑战性的低延迟需求。我们之前的出版物认为边缘计算应该对客户透明。我们引入了一种高效的解决方案来实现这种透明的方法,利用软件定义网络和虚拟IP+端口地址来注册边缘服务。我们架构的核心组件是Patricia Trie,它存储了我们所有的虚拟IP+端口地址。不幸的是,Patricia Tries的大多数实现都不适合具有数百万个键的用例,在这些用例中,低内存占用是必不可少的。在本文中,我们介绍了TinyTric $\dot{w}$,这是一个空间高效的Patricia Trie的开源实现,用于高达256位的密钥。TinyTricia可以跟踪多达5亿(229)个密钥$\leq$ 57位,最多25亿(228-1)个密钥$\leq$ 256位,内存要求很小。在后一种情况下,每个键可以有任何类型的数据值。密钥$\leq$ 57位每个密钥只需要8到16个字节(即每个57位密钥只需要0到8个字节的开销);对于密钥$\geq$ 58位,将密钥大小(以整个字节为单位)添加到这些值中。因此,对于1678万(224)个57位密钥,我们的解决方案需要128到256 MiB的内存。与其他一些节省空间的实现不同,TinyTriia允许在运行时添加和删除键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TinyTricia – A Space-Optimized Patricia Trie For Transparent Access to Edge Computing Services
Multi-access Edge Computing (MEC) is an essential piece of 5G telecommunication systems to satisfy the challenging low-latency demands of future applications. Our previous publications argue that edge computing should be transparent to clients. We introduced an efficient solution to implement such a transparent approach, leveraging Software-Defined Networking and virtual IP+port addresses for registered edge services. A core component of our architecture is a Patricia Trie, which stores all our virtual IP+port addresses. Unfortunately, most implementations of Patricia Tries are not geared toward use cases with millions of keys where a low memory footprint becomes essential. In this paper, we present TinyTric$\dot{w}$, a space-efficient open-source implementation of a Patricia Trie for keys up to 256 bits. TinyTricia can keep track of up to half a billion (229) keys $\leq$57 bits and up to a quarter of a billion (228-1) keys $\leq$256 bits with tiny memory requirements. In the latter case, each key can have a data value of any type. Keys $\leq$57 bits require only 8 to 16 bytes per key (i.e., only 0 to 8 bytes overhead per 57-bit key); for keys $\geq$58 bits, add the key size (in whole bytes) to these values. Thus, for 16.78 million (224)57-bit keys, our solution requires between 128 and 256 MiB of memory. Unlike some other spaceefficient implementations, TinyTriia allows adding and removing keys at runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信