苏丹卡布斯大学混合可再生能源系统的设计、实施和安装

N. Hosseinzadeh, Mohammed H. Albadi
{"title":"苏丹卡布斯大学混合可再生能源系统的设计、实施和安装","authors":"N. Hosseinzadeh, Mohammed H. Albadi","doi":"10.1109/ICCIAUTOM.2017.8258709","DOIUrl":null,"url":null,"abstract":"A prototype of a hybrid renewable energy system (HRES), which includes solar energy, wind energy, and battery storage, was designed, implemented and installed in one of the laboratories of the College of Engineering at Sultan Qaboos University (SQU). The system can be upgraded to a small-scale microgrid, which may be used as a stand-alone renewable energy system for remote rural applications or may be connected to the low-voltage (LV) power network capable of importing/exporting electrical energy. In the latter application, it is suitable for residential homes. To have a better understanding of how this HRES may operate, various scenarios of operation were tested. Graphs of the microgrid performance in some of these scenarios are provided in this paper.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design, implementation and installation of a hybrid renewable energy system at Sultan Qaboos University\",\"authors\":\"N. Hosseinzadeh, Mohammed H. Albadi\",\"doi\":\"10.1109/ICCIAUTOM.2017.8258709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A prototype of a hybrid renewable energy system (HRES), which includes solar energy, wind energy, and battery storage, was designed, implemented and installed in one of the laboratories of the College of Engineering at Sultan Qaboos University (SQU). The system can be upgraded to a small-scale microgrid, which may be used as a stand-alone renewable energy system for remote rural applications or may be connected to the low-voltage (LV) power network capable of importing/exporting electrical energy. In the latter application, it is suitable for residential homes. To have a better understanding of how this HRES may operate, various scenarios of operation were tested. Graphs of the microgrid performance in some of these scenarios are provided in this paper.\",\"PeriodicalId\":197207,\"journal\":{\"name\":\"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2017.8258709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

苏丹卡布斯大学(SQU)工程学院的一个实验室设计、实施和安装了一个混合可再生能源系统(HRES)的原型,该系统包括太阳能、风能和电池存储。该系统可升级为小型微电网,可作为偏远农村应用的独立可再生能源系统使用,也可连接到能够输入/输出电能的低压电网。在后一种应用中,它适用于住宅。为了更好地理解这个HRES是如何运行的,我们测试了各种操作场景。本文提供了其中一些场景下的微电网性能图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, implementation and installation of a hybrid renewable energy system at Sultan Qaboos University
A prototype of a hybrid renewable energy system (HRES), which includes solar energy, wind energy, and battery storage, was designed, implemented and installed in one of the laboratories of the College of Engineering at Sultan Qaboos University (SQU). The system can be upgraded to a small-scale microgrid, which may be used as a stand-alone renewable energy system for remote rural applications or may be connected to the low-voltage (LV) power network capable of importing/exporting electrical energy. In the latter application, it is suitable for residential homes. To have a better understanding of how this HRES may operate, various scenarios of operation were tested. Graphs of the microgrid performance in some of these scenarios are provided in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信