一种新概念射频源的工作分析,称为回旋磁力线

J. O. Rossi, F. S. Yamasaki, E. Schamiloglu, J. Barroso, U. Hasar
{"title":"一种新概念射频源的工作分析,称为回旋磁力线","authors":"J. O. Rossi, F. S. Yamasaki, E. Schamiloglu, J. Barroso, U. Hasar","doi":"10.1109/IMOC.2017.8121122","DOIUrl":null,"url":null,"abstract":"Gyromagnetic nonlinear transmission lines are interesting new devices used for RF generation since they are all solid state, lightweight and compact, neither requiring vacuum nor thermionic filament as in electronic tubes. Experiments with these lines have demonstrated their successful operation at L and S bands, thereby enabling them for applications in UWB pulsed radars in space vehicles and defense systems. There is also a great interest in compact solid-state high-power microwave sources for applications in small defense platforms (boats, trucks, etc.) to destroy the enemy electronic systems. Although the operation of these devices has been demonstrated exhaustively in recent years, their working principle is not quite well understood so far as it has been expected that the precession of the magnetic dipoles in the ferrite material given by the Larmor frequency, which predicts a proportional increase with the magnetic field bias. However, as observed experimentally the opposite occurs and the frequency decreases with the increasing of the magnetic field applied. Thus, the objective of this paper is to address this problem using the Landau-Lifshitz-Gilbert (LLG) equation with boundary conditions on the TEM mode propagation in the coaxial line. The formulation obtained for the precession frequency will be used to compare with experimental data found in the literature.","PeriodicalId":171284,"journal":{"name":"2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Operation analysis of a novel concept of RF source known as gyromagnetic line\",\"authors\":\"J. O. Rossi, F. S. Yamasaki, E. Schamiloglu, J. Barroso, U. Hasar\",\"doi\":\"10.1109/IMOC.2017.8121122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gyromagnetic nonlinear transmission lines are interesting new devices used for RF generation since they are all solid state, lightweight and compact, neither requiring vacuum nor thermionic filament as in electronic tubes. Experiments with these lines have demonstrated their successful operation at L and S bands, thereby enabling them for applications in UWB pulsed radars in space vehicles and defense systems. There is also a great interest in compact solid-state high-power microwave sources for applications in small defense platforms (boats, trucks, etc.) to destroy the enemy electronic systems. Although the operation of these devices has been demonstrated exhaustively in recent years, their working principle is not quite well understood so far as it has been expected that the precession of the magnetic dipoles in the ferrite material given by the Larmor frequency, which predicts a proportional increase with the magnetic field bias. However, as observed experimentally the opposite occurs and the frequency decreases with the increasing of the magnetic field applied. Thus, the objective of this paper is to address this problem using the Landau-Lifshitz-Gilbert (LLG) equation with boundary conditions on the TEM mode propagation in the coaxial line. The formulation obtained for the precession frequency will be used to compare with experimental data found in the literature.\",\"PeriodicalId\":171284,\"journal\":{\"name\":\"2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMOC.2017.8121122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2017.8121122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

旋转磁非线性传输线是用于射频产生的有趣的新设备,因为它们都是固态的,重量轻,结构紧凑,既不需要真空也不需要电子管中的热离子灯丝。这些线路的实验已经证明了它们在L和S波段的成功操作,从而使它们能够应用于太空飞行器和国防系统中的超宽带脉冲雷达。紧凑型固态高功率微波源应用于小型防御平台(船只、卡车等),以摧毁敌人的电子系统,也引起了人们的极大兴趣。虽然近年来这些装置的工作原理已经得到了充分的证明,但它们的工作原理还没有得到很好的理解,因为人们预计铁氧体材料中磁偶极子的进动由拉莫尔频率给出,该频率预测磁场偏倚成比例地增加。然而,根据实验观察,相反的情况发生,频率随着施加磁场的增加而降低。因此,本文的目的是利用TEM模式在同轴线上传播的具有边界条件的Landau-Lifshitz-Gilbert (LLG)方程来解决这个问题。所得的岁差频率公式将用于与文献中的实验数据进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operation analysis of a novel concept of RF source known as gyromagnetic line
Gyromagnetic nonlinear transmission lines are interesting new devices used for RF generation since they are all solid state, lightweight and compact, neither requiring vacuum nor thermionic filament as in electronic tubes. Experiments with these lines have demonstrated their successful operation at L and S bands, thereby enabling them for applications in UWB pulsed radars in space vehicles and defense systems. There is also a great interest in compact solid-state high-power microwave sources for applications in small defense platforms (boats, trucks, etc.) to destroy the enemy electronic systems. Although the operation of these devices has been demonstrated exhaustively in recent years, their working principle is not quite well understood so far as it has been expected that the precession of the magnetic dipoles in the ferrite material given by the Larmor frequency, which predicts a proportional increase with the magnetic field bias. However, as observed experimentally the opposite occurs and the frequency decreases with the increasing of the magnetic field applied. Thus, the objective of this paper is to address this problem using the Landau-Lifshitz-Gilbert (LLG) equation with boundary conditions on the TEM mode propagation in the coaxial line. The formulation obtained for the precession frequency will be used to compare with experimental data found in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信