火柴盒:室内图像匹配通过盒样场景估计

F. Srajer, A. Schwing, M. Pollefeys, T. Pajdla
{"title":"火柴盒:室内图像匹配通过盒样场景估计","authors":"F. Srajer, A. Schwing, M. Pollefeys, T. Pajdla","doi":"10.1109/3DV.2014.56","DOIUrl":null,"url":null,"abstract":"Key point matching in images of indoor scenes traditionally employs features like SIFT, GIST and HOG. While those features work very well for two images related to each other by small camera transformations, we commonly observe a drop in performance for patches representing scene elements visualized from a very different perspective. Since increasing the space of considered local transformations for feature matching decreases their discriminative abilities, we propose a more global approach inspired by the recent success of monocular scene understanding. In particular we propose to reconstruct a box-like model of the scene from every single image and use it to rectify images before matching. We show that a monocular scene model reconstruction and rectification preceding standard feature matching significantly improves key point matching and dramatically improves reconstruction of difficult indoor scenes.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Match Box: Indoor Image Matching via Box-Like Scene Estimation\",\"authors\":\"F. Srajer, A. Schwing, M. Pollefeys, T. Pajdla\",\"doi\":\"10.1109/3DV.2014.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key point matching in images of indoor scenes traditionally employs features like SIFT, GIST and HOG. While those features work very well for two images related to each other by small camera transformations, we commonly observe a drop in performance for patches representing scene elements visualized from a very different perspective. Since increasing the space of considered local transformations for feature matching decreases their discriminative abilities, we propose a more global approach inspired by the recent success of monocular scene understanding. In particular we propose to reconstruct a box-like model of the scene from every single image and use it to rectify images before matching. We show that a monocular scene model reconstruction and rectification preceding standard feature matching significantly improves key point matching and dramatically improves reconstruction of difficult indoor scenes.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

传统的室内场景图像关键点匹配采用SIFT、GIST、HOG等特征。虽然这些特征对于通过小相机变换相互关联的两幅图像非常有效,但我们通常会观察到从非常不同的角度呈现场景元素的补丁的性能下降。由于增加用于特征匹配的考虑局部变换的空间会降低它们的判别能力,我们提出了一种更全局的方法,灵感来自最近单目场景理解的成功。特别地,我们建议从每个单独的图像中重建一个场景的盒状模型,并用它在匹配之前对图像进行校正。我们发现,在标准特征匹配之前进行单目场景模型重建和校正,可以显著改善关键点匹配,并显著改善困难室内场景的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Match Box: Indoor Image Matching via Box-Like Scene Estimation
Key point matching in images of indoor scenes traditionally employs features like SIFT, GIST and HOG. While those features work very well for two images related to each other by small camera transformations, we commonly observe a drop in performance for patches representing scene elements visualized from a very different perspective. Since increasing the space of considered local transformations for feature matching decreases their discriminative abilities, we propose a more global approach inspired by the recent success of monocular scene understanding. In particular we propose to reconstruct a box-like model of the scene from every single image and use it to rectify images before matching. We show that a monocular scene model reconstruction and rectification preceding standard feature matching significantly improves key point matching and dramatically improves reconstruction of difficult indoor scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信