K-DBSCAN:一种高效的基于密度的聚类算法,支持并行计算

Chao Deng, Jinwei Song, Saihua Cai, Ruizhi Sun, Yinxue Shi, Shangbo Hao
{"title":"K-DBSCAN:一种高效的基于密度的聚类算法,支持并行计算","authors":"Chao Deng, Jinwei Song, Saihua Cai, Ruizhi Sun, Yinxue Shi, Shangbo Hao","doi":"10.1504/IJSPM.2018.094740","DOIUrl":null,"url":null,"abstract":"DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-DBSCAN: an efficient density-based clustering algorithm supports parallel computing\",\"authors\":\"Chao Deng, Jinwei Song, Saihua Cai, Ruizhi Sun, Yinxue Shi, Shangbo Hao\",\"doi\":\"10.1504/IJSPM.2018.094740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.\",\"PeriodicalId\":266151,\"journal\":{\"name\":\"Int. J. Simul. Process. Model.\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Simul. Process. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSPM.2018.094740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2018.094740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DBSCAN是最具代表性的基于密度的聚类算法,在许多领域得到了广泛的应用。然而,DBSCAN的运行时间在许多实际应用程序中是不可接受的。为了提高聚类算法的性能,本文提出了一种新的基于二维密度的聚类算法K-DBSCAN,该算法通过简化的k-均值划分过程和可达分区索引成功地降低了聚类过程的计算复杂度,并通过分治法实现了并行计算。实验表明,与传统的DBSCAN算法相比,K-DBSCAN算法在基于空间密度的大规模聚类中具有显著的精度、效率和适用性。K- dbscan的时间复杂度为O(N2/KC),其中K为数据分区数,C为物理计算核数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-DBSCAN: an efficient density-based clustering algorithm supports parallel computing
DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信