R. Belaidi, A. Haddouche, M. Fathi, M. M. Larafi, G. M. Kaci
{"title":"基于SAPF的并网光伏系统性能改进研究","authors":"R. Belaidi, A. Haddouche, M. Fathi, M. M. Larafi, G. M. Kaci","doi":"10.1109/IRSEC.2016.7984050","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a shunt Active Power Filter (SAPF) for grid-connected photovoltaic systems. The proposed system injects PV power into the grid, by feeding the SAPF; to eliminate harmonics currents and compensate reactive power produced by nonlinear loads. To inject the photovoltaic power to the grid we use a boost converter controlled by a Fuzzy logic (FLC) algorithm for maximum power point tracking (MPPT). The SAPF system is based on a two-level voltage source inverter (VSI); P-Q theory algorithm is used for references harmonic currents extraction. The overall system is designed and developed using MATLAB/Simulink software. Simulation results confirm the performance of the grid-connected photovoltaic system based on SAPF. For the MPPT controller, the results show that the proposed FLC algorithm is fast in finding the MPPT than conventional techniques used for MPPT like perturbed and observed (P&O). The simulated compensation system shows its effectiveness such as the sinusoidal form of the currents and the reactive power compensation. The proposed solution has achieved a low Total Harmonic Distortion (THD), demonstrating the efficiency of the presented method. Also, the results determine the performances of the proposed system and offer future perspectives of renewable energy for power quality improvement.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Performance of grid-connected PV system based on SAPF for power quality improvement\",\"authors\":\"R. Belaidi, A. Haddouche, M. Fathi, M. M. Larafi, G. M. Kaci\",\"doi\":\"10.1109/IRSEC.2016.7984050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a shunt Active Power Filter (SAPF) for grid-connected photovoltaic systems. The proposed system injects PV power into the grid, by feeding the SAPF; to eliminate harmonics currents and compensate reactive power produced by nonlinear loads. To inject the photovoltaic power to the grid we use a boost converter controlled by a Fuzzy logic (FLC) algorithm for maximum power point tracking (MPPT). The SAPF system is based on a two-level voltage source inverter (VSI); P-Q theory algorithm is used for references harmonic currents extraction. The overall system is designed and developed using MATLAB/Simulink software. Simulation results confirm the performance of the grid-connected photovoltaic system based on SAPF. For the MPPT controller, the results show that the proposed FLC algorithm is fast in finding the MPPT than conventional techniques used for MPPT like perturbed and observed (P&O). The simulated compensation system shows its effectiveness such as the sinusoidal form of the currents and the reactive power compensation. The proposed solution has achieved a low Total Harmonic Distortion (THD), demonstrating the efficiency of the presented method. Also, the results determine the performances of the proposed system and offer future perspectives of renewable energy for power quality improvement.\",\"PeriodicalId\":180557,\"journal\":{\"name\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2016.7984050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7984050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of grid-connected PV system based on SAPF for power quality improvement
This paper presents the design of a shunt Active Power Filter (SAPF) for grid-connected photovoltaic systems. The proposed system injects PV power into the grid, by feeding the SAPF; to eliminate harmonics currents and compensate reactive power produced by nonlinear loads. To inject the photovoltaic power to the grid we use a boost converter controlled by a Fuzzy logic (FLC) algorithm for maximum power point tracking (MPPT). The SAPF system is based on a two-level voltage source inverter (VSI); P-Q theory algorithm is used for references harmonic currents extraction. The overall system is designed and developed using MATLAB/Simulink software. Simulation results confirm the performance of the grid-connected photovoltaic system based on SAPF. For the MPPT controller, the results show that the proposed FLC algorithm is fast in finding the MPPT than conventional techniques used for MPPT like perturbed and observed (P&O). The simulated compensation system shows its effectiveness such as the sinusoidal form of the currents and the reactive power compensation. The proposed solution has achieved a low Total Harmonic Distortion (THD), demonstrating the efficiency of the presented method. Also, the results determine the performances of the proposed system and offer future perspectives of renewable energy for power quality improvement.