轨道机动

{"title":"轨道机动","authors":"","doi":"10.1002/9781119455301.ch6","DOIUrl":null,"url":null,"abstract":"A classical manoeuvre problem would be to have an orbit with a known semi major axis a1, then change the velocity of the spacecraft to change this to a new value a2. The short motor burn which causes the change in velocity takes place with a value of r which is constant to both orbits. We thus know a1, a2 and r, so we can calculate the velocity required for both orbits, and hence the change in velocity to move between the two orbits.","PeriodicalId":101486,"journal":{"name":"Foundations of Space Dynamics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital Manoeuvres\",\"authors\":\"\",\"doi\":\"10.1002/9781119455301.ch6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical manoeuvre problem would be to have an orbit with a known semi major axis a1, then change the velocity of the spacecraft to change this to a new value a2. The short motor burn which causes the change in velocity takes place with a value of r which is constant to both orbits. We thus know a1, a2 and r, so we can calculate the velocity required for both orbits, and hence the change in velocity to move between the two orbits.\",\"PeriodicalId\":101486,\"journal\":{\"name\":\"Foundations of Space Dynamics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Space Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119455301.ch6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Space Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119455301.ch6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个经典的机动问题是有一个已知的半长轴a1的轨道,然后改变航天器的速度,将其改变为一个新的值a2。引起速度变化的短时间发动机燃烧发生时的r值对两个轨道都是恒定的。这样我们就知道了a1 a2和r,所以我们可以计算出两个轨道所需的速度,从而计算出在两个轨道之间移动的速度变化量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orbital Manoeuvres
A classical manoeuvre problem would be to have an orbit with a known semi major axis a1, then change the velocity of the spacecraft to change this to a new value a2. The short motor burn which causes the change in velocity takes place with a value of r which is constant to both orbits. We thus know a1, a2 and r, so we can calculate the velocity required for both orbits, and hence the change in velocity to move between the two orbits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信