利用时间序列平稳化和前馈神经网络的日前太阳预报

Mohana S. Alanazi, A. Khodaei
{"title":"利用时间序列平稳化和前馈神经网络的日前太阳预报","authors":"Mohana S. Alanazi, A. Khodaei","doi":"10.1109/NAPS.2016.7747994","DOIUrl":null,"url":null,"abstract":"Solar forecasting is a pivotal factor in a viable solar energy deployment to support reliable and cost-effective grid operation and control. This paper proposes a new approach to overcome one of the most significant challenges in solar generation forecasting, i.e., the limited availability of the stationary data sets. This challenge is addressed by converting the non-stationary historical solar irradiance data into a stationary set, which will be further validated using an ADF test. This conversion will be followed by a neural network-based forecasting and proper post-processing steps. Numerical simulations exhibit the performance of the proposed method, which has achieved a mean absolute percentage error (MAPE) of less than 1% under different weather conditions.","PeriodicalId":249041,"journal":{"name":"2016 North American Power Symposium (NAPS)","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Day-ahead solar forecasting using time series stationarization and feed-forward neural network\",\"authors\":\"Mohana S. Alanazi, A. Khodaei\",\"doi\":\"10.1109/NAPS.2016.7747994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar forecasting is a pivotal factor in a viable solar energy deployment to support reliable and cost-effective grid operation and control. This paper proposes a new approach to overcome one of the most significant challenges in solar generation forecasting, i.e., the limited availability of the stationary data sets. This challenge is addressed by converting the non-stationary historical solar irradiance data into a stationary set, which will be further validated using an ADF test. This conversion will be followed by a neural network-based forecasting and proper post-processing steps. Numerical simulations exhibit the performance of the proposed method, which has achieved a mean absolute percentage error (MAPE) of less than 1% under different weather conditions.\",\"PeriodicalId\":249041,\"journal\":{\"name\":\"2016 North American Power Symposium (NAPS)\",\"volume\":\"324 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2016.7747994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2016.7747994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

太阳能预测是一个关键因素,在一个可行的太阳能部署,以支持可靠和具有成本效益的电网运行和控制。本文提出了一种新的方法来克服太阳能发电预测中最重要的挑战之一,即平稳数据集的有限可用性。通过将非平稳历史太阳辐照度数据转换为平稳数据集来解决这一挑战,该数据集将使用ADF测试进一步验证。这种转换之后将是基于神经网络的预测和适当的后处理步骤。数值模拟结果表明,该方法在不同天气条件下的平均绝对百分比误差(MAPE)均小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Day-ahead solar forecasting using time series stationarization and feed-forward neural network
Solar forecasting is a pivotal factor in a viable solar energy deployment to support reliable and cost-effective grid operation and control. This paper proposes a new approach to overcome one of the most significant challenges in solar generation forecasting, i.e., the limited availability of the stationary data sets. This challenge is addressed by converting the non-stationary historical solar irradiance data into a stationary set, which will be further validated using an ADF test. This conversion will be followed by a neural network-based forecasting and proper post-processing steps. Numerical simulations exhibit the performance of the proposed method, which has achieved a mean absolute percentage error (MAPE) of less than 1% under different weather conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信