{"title":"用于天文质心预测的动态人工神经网络","authors":"S. Weddell, R. Webb","doi":"10.1109/HIS.2006.22","DOIUrl":null,"url":null,"abstract":"Motivation for this research is the real-time restoration of faint astronomical images through turbulence over a large field-of-view. A simulation platform was developed to predict the centroid of a science object, convolved through multiple perturbation fields, and projected on to an image plane. Centroid data were selected from various source and target locations and used to train an artificial neural network to estimate centroids over a spatial grid, defined on the image plane. The capability of the network to learn to predict centroids over new target locations was assessed using a priori centroid data corresponding to selected grid locations. Various distortion fields were used in training and simulating the network including data collected from observation runs at a local observatory. Results from this work provide the basis for extensions and application to modal tomography.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy\",\"authors\":\"S. Weddell, R. Webb\",\"doi\":\"10.1109/HIS.2006.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation for this research is the real-time restoration of faint astronomical images through turbulence over a large field-of-view. A simulation platform was developed to predict the centroid of a science object, convolved through multiple perturbation fields, and projected on to an image plane. Centroid data were selected from various source and target locations and used to train an artificial neural network to estimate centroids over a spatial grid, defined on the image plane. The capability of the network to learn to predict centroids over new target locations was assessed using a priori centroid data corresponding to selected grid locations. Various distortion fields were used in training and simulating the network including data collected from observation runs at a local observatory. Results from this work provide the basis for extensions and application to modal tomography.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy
Motivation for this research is the real-time restoration of faint astronomical images through turbulence over a large field-of-view. A simulation platform was developed to predict the centroid of a science object, convolved through multiple perturbation fields, and projected on to an image plane. Centroid data were selected from various source and target locations and used to train an artificial neural network to estimate centroids over a spatial grid, defined on the image plane. The capability of the network to learn to predict centroids over new target locations was assessed using a priori centroid data corresponding to selected grid locations. Various distortion fields were used in training and simulating the network including data collected from observation runs at a local observatory. Results from this work provide the basis for extensions and application to modal tomography.